
12

Scripting

Forms Automation Manual Page 1 Thursday, June 18, 1998 11:30 AM
In this chapter:

■ Overview 12-2

■ Entering and Editing Scripts 12-3

■ Informed JavaScript Implementation 12-5

■ Reference Object Descriptions 12-12

■ Additional Built-in Objects 12-67

■ Error Handling 12-70

■ Sample Scripts 12-71

12-2 Scripting

.
.

.
.

e
 com-

gured

cript-
ct as

g

ight
t
 pur-
ple as

g
r the

hat
-

nt to
ons

Forms Automation Manual Page 2 Thursday, June 18, 1998 11:30 AM
12Scripting
Scripting languages allow you to control Windows and Mac OS applications with program-lik
scripts.You can write scripts to perform tasks as simple as opening and printing a form, or as
plex as controlling a sophisticated workflow process.

This chapter provides an overview of Informed’s scripting capabilities. You’ll learn how to use
Informed Designer’s Scripts command to attach scripts to templates so that they can be confi
to run when the Informed Filler user invokes certain actions.

This chapter includes a thorough reference to Informed’s implementation of the JavaScript s
ing language. The reference material includes a description of each Informed JavaScript obje
well as examples and descriptions of the terminology to use when writing scripts for Informed
Filler. For information about Informed’s AppleScript implementation, please refer to the “Usin
AppleScript” topic in Informed Designer’s on-line help system or the on-line document
“AScript.PDF” on the Informed CD-ROM.

Overview
A single script can automate a task that normally requires several steps. For example, you m
write a script that would find and print all invoices that exceed five hundred dollars. A differen
script could create a new purchase order form and fill it in with information from one or more
chase requisition forms. For the Informed Filler user, performing such tasks becomes as sim
selecting a script

Informed’s scripting features rely on Informed scripting plug-ins. By using plug-ins, Shana
Corporation can easily support new scripting languages simply by implementing new scriptin
plug-ins. At the time this documentation was prepared, Informed Designer included plug-ins fo
following scripting languages:

■ JavaScript

■ AppleScript

Informed’s JavaScript support gives you the ability to create powerful cross-platform scripts t
will operate equally well on both Windows and MacOS computers. Informed’s AppleScript fea
tures are available only on MacOS compatible computers.

Informed Designer can store scripts in form documents. Whenever you copy a form docume
another place, or mail a form to another person, the scripts remain part of the form. Applicati
that can store scripts, such as Informed Designer and Informed Filler, are often called attachable
applications. This is because scripts can be attached to particular actions in the application. When
the user performs an action, the application triggers a script.

Overview

Scripting 12-3

 .
 .

 .

user

r’s

mput-

ears.

 the

Forms Automation Manual Page 3 Thursday, June 18, 1998 11:30 AM
.

You configure forms with Informed Designer so that Informed Filler invokes scripts when the
performs certain actions. You can attach scripts to the following actions:

■ selecting a menu item

■ clicking a button

■ typing a value in a lookup cell

■ submitting a form

Before configuring an action, however, you must first enter the script using Informed Designe
Scripts command. See the following section for instructions on how to enter and edit scripts.

Entering and Editing Scripts
The procedure for entering a script is the same on both Windows and Mac OS compatible co
ers.You use Informed Designer’s Scripts command to add, remove, and edit scripts.

■ Choose Scripts from the Configure submenu under the Form menu. The Scripts dialog app

If any scripts are currently attached to the form, their names will appear in the scrolling list in
order that they were created.

To add a new script to your form:

■ Click ‘New.’ The Edit Script dialog box appears.

Entering and Editing Scripts

12-4 Scripting

 .
 .

 .

 see

ppear
nu:

ge

rm

Forms Automation Manual Page 4 Thursday, June 18, 1998 11:30 AM
.

■ Type the name of the new script in the ‘Script Name’ text box. This is the name that you’ll
when you configure an action to invoke a script.

■ Enter a script by typing in the text box, or click the ‘Import’ button to import a script from
another file.

In version 2.5 (or later) of Informed, a script that’s attached to a form does not automatically a
in Informed Filler’s Scripts menu. If you want a script to appear in Informed Filler’s Scripts me

■ Click the ‘Show in Informed Filler’s Scripts menu’ checkbox.

■ Check for errors by clicking the ‘Check’ button. If an error is detected, you’ll see a messa
describing the error. If there are no errors, the script will display properly formatted.

■ Click ‘OK’ on the Edit Script dialog box. Informed Designer will store the script with the fo
and display it in the scrolling list on the Scripts dialog.

Scripting 12-5

 .
 .

 .

t you

ith
eate
nts of
ormed

t
id,

efer-

Forms Automation Manual Page 5 Thursday, June 18, 1998 11:30 AM
.

To edit an existing script:

■ Select the script name in the Scripts dialog scrolling list, then click ‘Edit.’

■ Make the appropriate changes on the Edit Scripts dialog.

To remove a script:

■ Select the script name in the Scripts dialog scrolling list, then click ‘Remove.’

Informed JavaScript Implementation
This section provides an overview of Informed’s JavaScript implementation. It is assumed tha
already understand the basics of JavaScript and are familiar with the Informed Designer and
Informed Filler applications.

Reference Objects

Using JavaScript to communicate with Informed Filler can be thought of as a conversation w
various objects in the Informed Filler application. To initiate this ‘conversation’ you need to cr
reference objects. A reference object is a JavaScript object that refers to one or more eleme
the Informed user interface. For example, a Record object refers to one or more records in Inf
Filler and a Cell object refers to one or more cells.

You use JavaScript’s new operator to construct reference objects as shown below:

//create a Document object
theDoc = new Document(2);

//create a new Menu object
theMenu = new Menu("File");

Reference objects can refer to their corresponding Informed elements in a number of differen
ways. For example, a Cell object can refer to one or more cells in Informed by name, index,
absolute position, relative position, range, or test.

For detailed information about reference objects, see “Reference Object Descriptions” and “R
ence Object Types” later in this chapter.

Informed JavaScript Implementation

//refers to the cell named "Cost" in the third record of the second document
Document(2).Record(3).Cell("Cost")

Reference by index Reference by name

12-6 Scripting

.
.

.
.

For
lement

is

ent.
rd of

e
ing a

Forms Automation Manual Page 6 Thursday, June 18, 1998 11:30 AM
Containment

Reference objects are organized hierarchically so that some objects are elements of others.
example, an Attachment object is an element of a Record object, and a Record object is an e
of a Document object. This organization is referred to as containment. One object is contained by
another or one object is the container of another. The object containment hierarchy in Informed
shown in the following diagram.

Syntax Shortcuts

To refer to a specific object, you would normally be required to specify its complete containm
The example below specifies the complete containment for a cell called “Age” in the first reco
a document called “Contacts”:

theDoc = new Document("Contacts", Informed);
theRec = new Record(1, theDoc);
theCell = new Cell("Age", theRec);

Complete containment specifications can be quite long, and typing them would quickly becom
tiresome. Fortunately, Informed provides syntax shortcuts which can simplify your scripts. Us
syntax shortcut, the above containment specification can be condensed to a single line:

theCell = Informed.Document("Contacts").Record(1).Cell("Age");

Informed Built-in command

Document

Menu

Plug-in command

Template

Window

Attached Script

Button

Collection

Format

Record

Saved Format

Tag

Menu Item Menu Item

Record

Column

Attachment

Cell Element

Scripting 12-7

 .
 .

 .

 The

e fol-

ormed

Forms Automation Manual Page 7 Thursday, June 18, 1998 11:30 AM
.

Using Variables

Another way to simplify your scripts is to use variables to store frequently used containment.
example below uses the same containment in each line of the script.

Informed.Document(2).currentRecord.Cell("Name").value = "Brent Taylor";
Informed.Document(2).currentRecord.Cell("Age").value = 37;
Informed.Document(2).currentRecord.Cell("Sex").value = "Male";

By using a variable, the above code can be simplified as follows:

var theRecord = Informed.Document(2).currentRecord;
theRecord.Cell("Name").value = "Brent Taylor";
theRecord.Cell("Age").value = 37;
theRecord.Cell("Sex").value = "Male";

Implied Containment

Another way to simplify your scripts is to use “implied containment.” This means that certain
objects can be left out of the object specification and appropriate defaults will be provided. Th
lowing objects are optional in a containment specification:

■ Informed

■ Document

■ Record

The example below shows a complete containment specification:

// Refers to the fourth cell of the third record of the second document
Informed.Document(2).Record(3).Cell(4)

The above example could be shortened by leaving out the Informed object. Therefore, the Inf
object is “implied.”

// Refers to the fourth cell of the third record of the second document
Document(2).Record(3).Cell(4)

Rules for Implied Containment

If you use implied containment in your scripts, you must be aware of the following rules:

■ If no document is specified, then the implied document is the current document:

// refers to the fourth cell of the third record of the current document
Informed.Record(3).Cell(4)

■ If no record is specified, then all records of the specified container are implied:

// refers to the fourth cell of every record of the second document
Document(2).Cell(4)

12-8 Scripting

 .
 .

 .

rd of

ute
ents
ject
ed.

ex ref-
ndex
 the
, the

 below:

e

ll

Forms Automation Manual Page 8 Thursday, June 18, 1998 11:30 AM
.
■ If no container is specified (or if the specified container is Informed) then the current reco

the current document is implied:

// refers to the fourth cell of the current record of the current document
Informed.Cell(4)

Reference Object Types

A reference object can refer to its corresponding Informed element by index, name, id, absol
position, or relative position. A reference object may also reference a group of Informed elem
which fall within a particular range or list, or which match a particular test. Each reference ob
provides constructors for the variety of ways in which the Informed elements can be referenc

Index Reference Objects

A reference object that refers to its corresponding Informed element by index is called an ind
erence object. Any Informed element which has an index property can be referenced by an i
reference object. The constructor for an index reference object requires the object’s index as
first argument and the object’s container as the second argument. If no container is specified
implied container will be used.

// references the fourth cell of the record referenced by theRec
theCell = new Cell(4, theRec);

// references the fourth cell of the current record
theRec.Cell(4)

The way an object’s index is determined depends on the type of object, as shown in the table

Determining Index
Object How Index is Determined

Document A Document’s index represents its front to back position on the screen. Th
frontmost Document would be Document (1), the Document behind it would
be Document (2).

Record A Record’s index refers to its position in its container. A Record’s container
can be a document or a collection:

//references the first record of the second document
Doc(2).Record(1)

//references the first record of the current collection of the
//second document
Doc(2).currentCollection.Record(1)

Cell A Cell’s index is taken from its Tab position on the form. For example, the ce
with Tab position 4 would be referred to as Cell (4).

Scripting 12-9

 .
 .

 .

bject.
and the
 will

uctor
ject’s
sed.

 refer-

object.
ts the

ment. If

ed

ject.
the
ent. If
 must

Forms Automation Manual Page 9 Thursday, June 18, 1998 11:30 AM
.

Name Reference Objects

Any Informed element which has a name property can be referenced by a name reference o
The constructor for a name reference object requires the object’s name as the first argument
object’s container for the second argument. If no container is specified, the implied container
be used.

// references the attachment named "Addendum" which belongs
// to the record referenced by theRec
theAttachment = new Attachment("Addendum", theRec);

ID Reference Objects

Any object which has an id property can be referenced by an id reference object. The constr
for an ID reference object requires the object’s ID reference as the first argument and the ob
container as the second argument. If no container is specified, the implied container will be u

Depending on the class, the id property of an object should be either an integer or a string. A
ence id is obtained by passing the appropriate integer or string to the built-in id() function.

// references the record whose id is 1620 of the
// document referenced by theDoc
theRec = new Record (id(1620), theDoc);

Absolute Position Reference Objects

Any object which has an index property can be referenced by an absolute position reference
The constructor for an absolute position reference object requires a constant which represen
object’s absolute position as the first argument and the object’s container as the second argu
no container is specified, the implied container will be used.

The Informed object’s absolute position can be referenced by any of the following constants:
FIRST, LAST, MIDDLE, ANY, or ALL. The ALL constant references all Informed objects of the specifi
class contained within the specified container.

//references the first cell of the record referenced by theRec
theCell = new Cell(FIRST, theRec);

// references every record in the current collection
// of the document referenced by theDoc
theRecList = theDoc.currentCollection.Record(ALL);

Relative Position Reference Objects

Any object which has an index property can be referenced by a relative position reference ob
The constructor for a relative position reference object requires a constant which represents
object’s relative position as the first argument and the object’s container as the second argum
no container is specified, the implied container will be used. Both the object and its container
have the same class.

12-10 Scripting

 .
 .

 .

con-
he

 first
ntainer
n.

struc-
 the
e.

hich
 the first

 within
ed by

NE(),
tions
t can
sted. If
Script

ary

Forms Automation Manual Page 10 Thursday, June 18, 1998 11:30 AM
.
The object’s absolute position can be referenced by any of the following constants: NEXT, or
PREVIOUS.

// references the next cell after the cell referenced by theRefCell
theCell = new Cell(NEXT, theRefCell);

Range Reference Objects

A range reference object is used to reference any range of indexed objects within the same
tainer. A range consists of all objects with indices between two boundary objects, inclusive. T
constructor for a range reference object requires the lower boundary reference object as the
argument, the upper boundary reference object as the second argument, and the objects’ co
as the third argument. Each boundary object must be an index, name, id, or absolute positio

// references cells 5 through the last of the document referenced by theDoc
theRecList = new Record(5, LAST, theDoc);

List Reference Objects

A list reference object refers to an arbitrary list of objects within the same container. The con
tor for a list reference object requires an Array of object references as the first argument and
objects’ container as the second argument. Each object reference must be an index or a nam

//refers to a list consisting of the cells "Qty" and "Cost"
theRefList = new Array("Qty", "Cost");
theCellList = theRec.Cell(theRefList);

Test Reference Objects

A test reference object is used to reference any group of objects within the same container w
pass a particular test. The constructor for a test reference object requires a test descriptor as
argument and the objects’ container as the second object.

A test descriptor describes a comparison test or a logical test to be performed on each object
the container. If an object passes the test, then it will be included among the objects referenc
the test reference object.

Comparison Test Descriptors

Comparison test descriptors are obtained by calling one of the built-in functions testEQ(), test
testGT(), testGE(), testLT(), testLE(), testBEG(), testEND(), or testCON(). Each of these func
requires two test arguments on which it performs the appropriate comparison. Each argumen
be a reference object contained by the object being tested, or a property of the object being te
so, use self as the container of the argument. Each argument can also be any other valid Java
value.

Note When using a range reference, the cells between the lower boundary and the upper bound
are determined by Tab position.

Scripting 12-11

 .
 .

 .

(), or
nts
rison

r test.
nt, a

e index
 con-

 particu-
d sec-

rth
 the fol-

Forms Automation Manual Page 11 Thursday, June 18, 1998 11:30 AM
.

//tests each record of the second document to see if the value of the
//"Name" cell is equal to "Bob"
Doc(2).Record(testEQ(self.Cell("Name"), "Bob"));

//references every record in the document referenced by
// theDoc whose index > 10
theRecList = new Record(testGT(self.Index, 10), theDoc);

Logical Tests Descriptors

Logical test descriptors are obtained by calling one of the built-in functions testAND(), testOR
testNOT(). The functions testAND() and testOR() require two or more test descriptor argume
and testNOT() requires one test descriptor argument. Each argument may be either a compa
test descriptor object or a logical test descriptor object.

// references every record in the current document whose
// cell "Name" contains "Brent" and whose cell "Date" equals today’s date
test1 = testCON (self.Cell("Name").value, "Brent");
test2 = testEQ (self.Cell("Date".value), new LongDate);
theTest = testAND (test1, test2);
theRecList = Informed.currentDocument.Record(theTest);

Index Test Reference Objects

An index test reference object references a specific object from those which pass a particula
The constructor for an index test reference object requires an index value as the first argume
test descriptor as the second argument, and the object’s container as the third argument. Th
argument can be specified by either an integer value or one of the following absolute position
stants: FIRST, LAST, MIDDLE, ANY, or ALL.

// references the second record of the document referenced
// by theDoc whose cell "Qty" <= 100
theTest = testLE (self.Cell("Qty").value, 100));
theRecList = theDoc.Record(2, theTest);

// references the last record of the document referenced
// by theDoc whose cell "Price" > 1000
theTest = testGT (self.Cell("Price").value, 1000));
theRecList = theDoc.Record(2, theTest);

Range Test Reference Objects

A range test reference object references a specific range of objects from those which pass a
lar test. The constructor for a range test reference object requires index values as the first an
ond arguments, a test descriptor as the third argument, and the objects’ container as the fou
argument. Each of the index arguments can be specified by either an integer value or one of
lowing absolute position constants: FIRST, LAST, MIDDLE, ANY, or ALL.

// references the first five records of the document referenced
// by theDoc whose cell "Cost" > 10000
theTest = testGT (self.Cell("Cost").value, 10000);
theRecList = theDoc.Record (1, 5, theTest);

12-12 Scripting

 .
 .

 .

bject

utton
 also be
t

ys

Forms Automation Manual Page 12 Thursday, June 18, 1998 11:30 AM
.

Reference Object Descriptions
The following sections describe each of the reference objects supported by Informed. Each o
description lists the reference methods, properties, and methods supported by the object.

AttachedScript

A document can contain a number of attached scripts. An attached script can be linked to a b
or a menu item and can be executed by selecting the associated menu item or button. It can
executed directly by another script. An AttachedScript object represents one or more scripts tha
are attached to a document.

Reference

An AttachedScript object can reference attached scripts by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

Properties

The following table lists the properties of an AttachedScript object.

AttachedScript Properties

Reference Object Descriptions

Property Writeable? Description

container no The container for the attached script. An attached script is alwa
contained by a Document object.

id no The unique id of the attached script.

index no The index of the attached script.

name no The name of the attached script.

objectClass no The AttachedScript class.

Scripting 12-13

 .
 .

 .

a form
onic

Forms Automation Manual Page 13 Thursday, June 18, 1998 11:30 AM
.

Methods

The following methods are defined for an AttachedScript object:

execute ()

The execute method executes an attached script and returns its result.

// Execute the script named "Post Submit" of the current document and store its
// result in the cell named "Submit Results" of the current record of the current
// cell.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
Cell("Submit Results").value = AttachedScript("Post Submit").execute();

exists ()

The exists method verifies the existence of an attached script.

// If it exists, execute the script named "Process Orders" of the document
// named "PO Batch" ignoring its result.
theScript = Document("PO Batch").AttachedScript("Process Orders");
if (theScript.exists())

theScript.execute();

Attachment

With paper forms, associated documents such as receipts or drawings are often attached to
with a paper clip. Informed Filler provides this same capability by allowing you to attach electr
documents to electronic forms. An Attachment object represents one or more files that are
attached to a record.

Reference

An Attachment object can reference attachments by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

12-14 Scripting

 .
 .

 .

n-

Forms Automation Manual Page 14 Thursday, June 18, 1998 11:30 AM
.
Properties

The following table lists the properties of an Attachment object.

Attachment Properties

Methods

The following methods are defined for an Attachment object:

exists ()

The exists method verifies the existence of an attachment.

// Set the variable "ok" to true if an attachment named "Sample.txt" exists
// in the current record of the current document.
ok = Informed.currentDocument.currentRecord.Attachment("Sample.txt").exists();

remove ()

The remove method deletes an attachment from a record.

// Remove every attachment from every record of the current collection of the
// document referenced by the variable theDoc.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
theDoc.currentCollection.Attachment(ALL).remove();

Property Writeable? Description

container no The container for the attachment. An attachment is always co
tained by a record.

id no The unique id of the attachment.

index no The index of the attachment.

name no The name of the attachment.

objectClass no The Attachment class.

Scripting 12-15

 .
 .

 .

 see

ch-

Forms Automation Manual Page 15 Thursday, June 18, 1998 11:30 AM
.

save (inFile)

The save method saves an attachment.

Arguments for the save method

// Save every attachment of the current record of the document named "Submissions"
// with its own name into the directory "c:\submit\".
theRec = Document("Submissions").currentRecord;
for (i = 1; i <= theRec.count(Attachment); i++) {

theAttachment = theRec.Attachment(i);
theAttachment.save(File("c:\submit\\" + theAttachment.name));

}

BuiltinCommand

Built-in commands correspond to the commands that are built into Informed Filler. The “Send
Mail” command is an example of a built-in command. A BuiltinCommand object represents one or
more built-in commands in Informed Filler. For a list of Informed’s built-in commands, please
“Appendix B” in this manual.

Reference

A BuiltinCommand object can reference built-in commands by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

Properties

The following table lists the properties of a BuiltinCommand object.

BuiltinCommand Properties

Argument Description

inFile This argument must be a File object which specifies the file into which the atta
ment will be saved.

Property Writeable? Description

enabled yes Is the built-in command enabled?

12-16 Scripting

.
.

.

rm. A

Forms Automation Manual Page 16 Thursday, June 18, 1998 11:30 AM
.

Methods

The following methods are defined for the BuiltinCommand object:

execute ()

The execute method executes a built-in command.

// Execute the built-in command "Log Off Service" to log off the signing service.
BuiltinCommand("Log Off Service").execute();

exists ()

The exists method verifies the existence of a built-in command.

// Set the variable ok to true if the built-in command "Send Mail" exists.
ok = BuiltinCommand("Send Mail").exists();

Button

A button on a form can be configured to invoke commands that are built into Informed Filler,
commands that are available through Informed plug-ins, or scripts that are attached to the fo
Button object represents one or more buttons on a form.

Reference

A Button object can reference buttons by:

■ name

■ index

■ absolute position

■ relative position

■ range

■ test

id no The unique id of the built-in command.

index no The index of the built-in command.

name no The name of the built-in command.

objectClass no The BuiltinCommand class.

Scripting 12-17

 .
 .

 .

 with

Forms Automation Manual Page 17 Thursday, June 18, 1998 11:30 AM
.

Properties

The following table lists the properties of a Button object.

Button Properties

Methods

The following methods are defined for a Button object:

execute ()

The execute method executes a button’s configured action.

// Execute the button named "Approve" of the current document if it is enabled.
theButton = Button("Approve");
if (theButton.enabled)
 theButton.execute();

exists ()

The exists method verifies the existence of a button.

// Check for the existence of the fifth button of the second document.
buttonExists = Document(2).Button(5).exists();

Cell

A Cell object represents one or more cells in a record. Cells include single value fields (drawn
the Field tool in Informed Designer) and multiple value fields, (drawn with the Table tool in
Informed Designer).

Property Writeable? Description

container no The container for the button. A button is always contained by a
document.

enabled yes Is the button enabled?

index no The index of the button.

name no The name of the button.

objectClass no The Button class.

title no The title of the button.

12-18 Scripting

 .
 .

 .

rd.

Forms Automation Manual Page 18 Thursday, June 18, 1998 11:30 AM
.
Reference

A Cell object can reference cells by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

Properties

The following table lists the properties of a Cell object.

Cell Properties
Property Writeable? Description

container no The container for the cell. A cell is always contained by a reco

currentElement yes The current element.

displayOnly yes Is the cell display only?

extraChoices yes The list of extra choices for the cell.

id no The unique id of the cell.

index no The index of the cell, relative to other cells.

mainChoices no The list of main choices for the cell.

name no The name of the cell.

objectClass no The Cell class.

signed no Is the cell signed?

tableID no The table id for a column cell.

title no The title of the cell.

value yes The value of the cell.

Scripting 12-19

 .
 .

 .

ok-

-

Forms Automation Manual Page 19 Thursday, June 18, 1998 11:30 AM
.

Methods

The following methods are defined for a Cell object:

clear ()

The clear method clears the cell of any data.

// Clear the cell named "Signature" of the current record of the document named
// "Authorization".
Document("Authorization").currentRecord.Cell("Signature").clear();

// Clear the cell named "Signature" of every record of the current collection of
// the document named "Authorization".
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
Document("Authorization").currentCollection.Cell("Signature").clear();

// Clear the cell named "Signature" of every record of the document named
// "Authorization".
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
Document("Authorization").Cell("Signature").clear();

// Clear every row of the table column cell named "Description" of the current
// record of the current document.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
Cell("Description").clear();

commit ([withLookup])

The commit method commits the cell data, triggering any formatting, check calculations, or lo
ups configured for the cell.

Arguments for the commit method

// Perform a deferred lookup by committing the cell data at a later time.
theDoc = Document("Purchase Order");
lookupCell = theDoc.currentRecord.Cell("Part Number");
lookupCell.set("PA123", true, false); // set lookup cell data but suppress lookup
DoSomeStuff(); // do some other stuff before doing lookup
theDoc.currentCell = lookupCell; // make lookup cell the current cell
lookupCell.commit(true); // force lookup now

Argument Description

withLookup Specifies whether or not a lookup is performed. If true , the lookup is performed
unconditionally. If false , the lookup is ignored. If null , a lookup is performed
only if the cell’s value has changed. The default value for the withLookup argu
ment is null . This argument is ignored if the specified cell is not a lookup cell.

12-20 Scripting

 .
 .

 .

ust be

Forms Automation Manual Page 20 Thursday, June 18, 1998 11:30 AM
.
count (elementClass)

The count method returns the number of elements in a cell.

Arguments for the count method

// Count the number of elements in the table cell "Result" of the current record of
// the second document.
rowCount = Document(2).currentRecord.Cell("Result").count(Element);

dataSize ()

The dataSize method returns the size of the cell data in bytes.

// Get the data size of the current cell of the current document.
theSize = Informed.currentDocument.currentCell.dataSize();

exists ()

The exists method verifies the existence of a cell.

// Check for the existence of Cell with an index of 999 in the third record
// of the frontmost document.
exists = Document(1).Record(3).Cell(999).exists();

get ()

The get method gets the value of a cell.

// Get the value of the cell named "Signed Date" of the current record of the
// frontmost document.
theValue = Document(FIRST).currentRecord.Cell("Signed Date").get();

// Get the value of the first cell in the current document.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
theValue = Cell(FIRST).get();

// Get the value of the table cell named "Description" of the current record of the
// current document. The result is an array.
theValueList = Informed.currentDocument.currentRecord.Cell("Description").get();

// Get the value of the cell named "Last Name" of every record of the current
// collection of the second document.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
theValueList = Document(2).currentCollection.Cell("Last Name").get();

Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value m
Element.

Scripting 12-21

 .
 .

 .

-

h-

Forms Automation Manual Page 21 Thursday, June 18, 1998 11:30 AM
.

// Get the value of the cell named "Birthdate" of every record of the document
// named "Student Info".
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
theValueList = Document("Student Info").Cell("Birthdate").get();

set (value,[withCommit],[withLookup])

The set method sets the value of a cell.

Arguments for the set method

// Clear the current cell of the current document.
Informed.currentDocument.currentCell.set("");

// Set a list of cells to a list of values.
cellNames = new Array ("Company Name", "Phone Number");
theCells = Document(2).currentRecord.Cell(cellNames);
theData = new Array ("Shana Corporation", "(403) 433-3690");
theCells.set(theData);

// Set a table column cell named "Values" from an Array of values.
theValues = new Array ("A", "B", "C");
theDoc.currentRecord.Cell("Values").set(theValues);

// Set each row of a table cell named "Items" of the current record of the document
// named "Summary" to the value of the cell named "Item" of each record of the
// current collection of the document named "Detail".
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
theValueList = Document("Detail").currentCollection.Cell("Item").get();
Document("Summary").currentRecord.Cell("Items").set(theValueList);

Argument Description

value The value to which the cell will be set.

withCommit If true , the data is committed to the cell immediately and any check calcula
tions or formatting options are triggered. If false , the data is not committed
immediately. The default is true .

withLookup Specifies whether or not a lookup is performed. If true , the lookup is per-
formed unconditionally. If false , the lookup is ignored. If null , a lookup is
performed only if the cell’s value has changed. The default value for the wit
Lookup argument is null . This argument is ignored if the specified cell is not a
lookup cell.

Note: If withLookup is specified (true or false), then withCommit must be
true or null .

12-22 Scripting

 .
 .

 .

uch
-

 dia-

Forms Automation Manual Page 22 Thursday, June 18, 1998 11:30 AM
.
// Set the cell named "Phone Number" of the current record of the document named
// "Address Info" to "(403)" but donít commit it.
theCell = Document("Address Info").currentRecord.Cell("Phone Number");
theCell.set("(403)", false);

// Copy cell "Part Number" from the current record of the document named "Purchase
// Requisition" to the current record of "Purchase Order" without performing the
// resulting lookup.
theVal = Document("Purchase Requisition").currentRecord.Cell("Part Number").get();
orderCell = Document("Purchase Order").currentRecord.Cell("Part Number");
orderCell.set(theVal, true, false);

sign ([signingSystem])

The sign method signs the indicated signature cells.

Arguments for the sign method

// Sign the signature cell named "Signature" of the current record of the
// document named "Authorization" using the Entrust signing system.
Document("Authorization").currentRecord.Cell("Signature").sign(ENTRUST);

// Sign the cell named "Signature" of every record of the current collection of the
// document named Authorization" using the signing system configured for the cell.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
Document("Authorization").currentCollection.Cell("Signature").sign();

verify ()

The verify method verifies the indicated signature cells and returns true if the cell contains a valid
signature, and false if the signature is not valid (or if the cell is not signed).

// Verify the signature in the cell named "Signature" of the current record of the
// document named "Authorization".
isValid = Document("Authorization").currentRecord.Cell("Signature").verify();

// Verify the cell named "Signature" of every record of the document named
// "Authorization". The result is an Array of boolean values.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
isValidList = Document("Authorization").Cell("Signature").verify();

Argument Description

signingSystem Specifies which signing service to use. This argument can be a constant s
as ENTRUST, ISIGNIMAP, or ISIGNPOP, a string that specifies the name of a sign
ing plug-in, or null . The default value for this argument is null , which uses
the signing service selected on the user’s Preferences dialog, or displays a
log asking the user to select a signing service.

Scripting 12-23

 .
 .

 .

ust be

Forms Automation Manual Page 23 Thursday, June 18, 1998 11:30 AM
.

Collection

A Collection object represents the current collection of records in a document.

Reference

A Collection object can reference collections by:

■ index

■ id

■ absolute position

■ test

Properties

The following table lists the properties of a Collection object.

Collection Properties

Methods

The following methods are defined for a Collection object:

count (elementClass)

The count method returns the number of records in a collection.

Arguments for the count method

// Count the number of records in the current collection of the current document.
theCount = Informed.currentDocument.currentCollection.count(Record);

Property Writeable? Description

container no The container for the collection. A collection is always con-
tained by a document.

id no The unique id of the collection

index no The index of the collection.

objectClass no The Collection class.

Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value m
Record.

12-24 Scripting

 .
 .

 .

ta

l

l-

 is

es.

e

 is

Forms Automation Manual Page 24 Thursday, June 18, 1998 11:30 AM
.
exists ()

The exists method verifies the existence of a collection.

// Check if the current collection of the second document exists.
exists = Document(2).currentCollection.exists();

export (toFile,[whichCells],[format],[doAppend],[rowwise],[useQuotes]
[doMerge],[includeNotes])

The export method exports every record in a collection to a file.

Arguments for the export method

// Export all cells of every record of the current collection of the current
// document to the Informed Interchanged file named "info.iif".
theFile = File("HD:info.iif");
Informed.currentDocument.currentCollection.export(theFile);

Argument Description

toFile This argument must be a File object which specifies the file into which the da
will be exported.

whichCells Specifies the cells which will be exported. This argument can be a single Cel
object, an array of Cell objects, a single column, or an array of columns. The
default value for whichCells is null , which specifies all cells. No container is
allowed for this argument.

format Specifies the file format of the export file. This argument can be one of the fo
lowing constants: INTERCHANGE, TAB_DELIMITED, or COMMA_DELIMITED, or a
string that specifies a format name. The default value for the format argument
INTERCHANGE.

doAppend If true , the exported records are appended to the end of the export file. If false ,
the export file is replaced with the exported records. The default value is false .

rowwise If true , then tables will be exported in row order. If false , tables will be
exported in column order. The default value is false .

useQuotes If true , then all exported values—except numbers—are surrounded with quot
If false , then only those values which contain delimiter characters are sur-
rounded with quotes. This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED.

doMerge If true , Informed will list each cell name on the first line of a new export file. Th
default value is true . This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED.

includeNotes If true , then any notes attached to the form will be exported. The default value
true . This argument is ignored if the format argument is not INTERCHANGE.

Scripting 12-25

 .
 .

 .

cord.

r

.

e

Forms Automation Manual Page 25 Thursday, June 18, 1998 11:30 AM
.

// Append the cells named "LastName", "FirstName", "Address", and "Phone" of
// every record in the current collection of the document named "Customers" to the
// tab delimited file named "names.txt" using quotes for all non-numeric data.
theCollection = Document("Customers").currentCollection;
theFile = File("c:\\names.txt");
theCells = Cell(new Array ("LastName", "FirstName", "Address", "Phone"));
theCollection.export(theFile, theCells, TAB_DELIMITED, true, null, true);

make (elementClass)

The make method creates a new record in a collection.

Arguments for the make method

// Create a new record in the current collection of the document named
// "Receivables".
theRec = Document("Receivables").currentCollection.make(Record);

print ([as],[copies],[fromPage],[toPage],[fromPart],[toPart],[printTemplate],
[printData],[collate])

The print method prints every record in a collection.

Arguments for the print method

Argument Description

elementClass This argument specifies the class of the new element. Its value must be Re

Argument Description

as Specifies whether to print as forms or as a list. This argument can be eithe
FORMS or RECORD_LIST. The default value is FORMS.

copies Specifies the number of copies to print. The default value is 1.

fromPage Specifies the page to start printing from. The default value is the first page

toPage Specifies the page to stop printing at. The default value is the last page.

fromPart Specifies which part of a multipart form to start printing from. The default
value is the first part.

toPart Specifies which part of a multipart form to stop printing at. The default valu
is the last part.

printTemplate If false , then don’t print the template. The default value is true .

printData If false , then don’t print the data. The default value is true .

collate Specifies whether or not to collate pages. The default value is true .

12-26 Scripting

 .
 .

 .

f

 doc-

w-

object

Forms Automation Manual Page 26 Thursday, June 18, 1998 11:30 AM
.
// Print every record in the collection of the current document as a single
// form.
Informed.currentDocument.currentCollection.print();

// Print two copies of the first page of every record in the second documentís
// current collection as a record list.
Document(2).currentCollection.print(RECORD_LIST, 2, 1, 1);

send ([recipients],[subject],[body],[format],[encloseAs],
[messageAttachments])

The send method sends every record in a collection using an electronic mail service.

Arguments for the send method

// Send every record of the current collection of the current document to the
// recipient "someone@someplace.com".
Informed.currentDocument.currentCollection.send("someone@someplace.com");

// Send every record of the current collection of the document named "Purchase
// Request" using the provided addressing information.
theCollection = Document("Purchase Request").currentCollection;
theRecipients = new Array ("someone@someplace.com", "someoneelse@someplace.com");
theSubject = "Purchase Request Form";
theBody = "Here's the purchase request form you requested.";
theAttach = new File ("c:\\request.xls");
theCollection.send(theRecipients, theSubject, theBody, PACKAGE, null, theAttach);

Argument Description

recipients Specifies the recipients. This argument can be a string or an array o
strings.

subject Specifies the subject of the message. The default is the name of the
ument being sent.

body The body of the mail message. The default value is null (no body).

format The format to send the form in. This argument can be one of the follo
ing constants: DATA, PACKAGE, INTERCHANGE, COMMA_DELIMITED, or
TAB_DELIMITED, or a string that specifies the name of a format. The
default value is DATA.

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

messageAttachments Specifies any additional attachments. This argument can be a File
or an array of File objects.

Scripting 12-27

 .
 .

 .

lt

g

f

n

 an

y

 doc-

w-

object

ady

Forms Automation Manual Page 27 Thursday, June 18, 1998 11:30 AM
.

sendExt ([usingStep],[recipients],[ccRecipients],[bccRecipients],
[appendRecipients],[subject],[body],[format],[encloseAs],
[messageAttachments],[appendAttachments],[mailSystem])

The sendExt method sends every record in a collection.

Arguments for the sendExt method
Argument Description

usingStep Specifies the name or the index of the routing step to use. The defau
value is null (no routing step). If a routing step is supplied, all other
optional arguments override their corresponding settings in the routin
step configuration.

recipients Specifies the recipients. This argument can be a string or an array o
strings. The default is null (no recipients).

ccRecipients Specifies a list of recipients to cc. This argument can be a string or a
array of strings. The default is null (no cc recipients).

bccRecipients Specifies a list of recipients to bcc. This argument can be a string or
array of strings. The default is null (no bcc recipients).

appendRecipients Specifies whether or not to append other recipients to those alread
specified in a routing step. The default value is false .

subject Specifies the subject of the message. The default is the name of the
ument being sent.

body The body of the mail message. The default value is null (no body).

format The format to send the form in. This argument can be one of the follo
ing constants: DATA, PACKAGE, INTERCHANGE, COMMA_DELIMITED, or
TAB_DELIMITED, or a string that specifies the name of a format. The
default value is DATA.

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

messageAttachments Specifies any additional attachments. This argument can be a File
or an array of File objects. The default value is null (no additional
attachments).

appendAttachments Specifies whether or not to append other attachments to those alre
specified in a routing step. The default value is false .

12-28 Scripting

 .
 .

 .
 is

il

ue is

n.

Forms Automation Manual Page 28 Thursday, June 18, 1998 11:30 AM
.

// Send every record of the current collection of the current document as specified
// by the 2nd routing step, except override the message body and CC to the
// recipient "somebody@someplace.com".
theCollection = Informed.currentDocument.currentCollection;
theRecipient = "someone@someplace.com";
theBody = "This is the new message body.";
theCollection.sendExt(2, theRecipient, null, null, true, null, theBody);

sendStep ([usingStep])

The sendStep method sends every record in a collection using a preconfigured routing step.

Arguments for the sendStep method

// Send every record of the current collection of the current document using the
// routing step named "Route To Manager".
Informed.currentDocument.currentCollection.sendStep("Route To Manager");

mailSystem This argument is illegal if a routing step is provided. If no routing step
provided, this argument can be a constant, a string that specifies the
name of a mail plug-in, or null which calls the default mail system on
the user’s machine. Informed provides the following constants for ma
systems that have the same name on both Windows and MacOS:

SMTP, EUDORA, MSMAIL, CCMAIL, and GROUPWISE

The following constants are for Windows only:

EXCHANGE, MAPI, VIM, MHS, MHSLOCAL

The following constants are for MacOS only:

QUARTERDECK, QUICKMAIL

Argument Description

usingStep Specifies the name or the index of the routing step to use. The default val
null (no routing step). If a routing step is supplied, all other optional argu-
ments override their corresponding settings in the routing step configuratio

Scripting 12-29

 .
 .

 .

a-
ecord.
s

ect,
c-
th
r

Forms Automation Manual Page 29 Thursday, June 18, 1998 11:30 AM
.

sort (sortCell,[descending])

The sort method sorts the records in the current collection.

Arguments for the sort method

// Sort the current collection of the document named "Employees" according to the
// "Employee No." cell.
Document("Employees").currentCollection.sort(Cell("Employee No."));

// Sort the current collection of the document "Employees" by the column named
// "Age" in descending order.
Document("Employees").currentCollection.sort(Column("Age"), true);

// Sort the current collection of the current document first by the cell "First
// Name" and then by the cell "Last Name". The result will be that the cells will
// be sorted by first name within last name as would be found in a phone book.
theSortCells = Cell(new Array("First Name", "Last Name"));
Informed.currentDocument.currentCollection.sort(theSortCells);

Column

Informed Filler’s Record List is a standard window that displays records in a list format. Inform
tion on the Record List is divided into rows and columns. Each row in the list represents one r
Each column corresponds to one cell on the form. A Column object represents one or more column
on the Record List.

Reference

A Column object can reference columns by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

Argument Description

sortCell Specifies the cells or columns on which to sort. Its value must be a Cell obj
Column object, or Array of Cell or Column objects. If an Array object is spe
ified, the current collection is sorted on each cell in the Array, beginning wi
the first cell in the Array and ending with the last. No container is allowed fo
this argument.

descending Specifies whether or not to sort in descending order. The default is false .

12-30 Scripting

 .
 .

 .

be

he

Forms Automation Manual Page 30 Thursday, June 18, 1998 11:30 AM
.
Properties

The following table lists the properties of a Column object.

Column Properties

Methods

The following methods are defined for a Column object:

clear ()

The clear method clears the column of any data.

// Clears the column named "Approval" of the current format of the current
// document.
Informed.currentDocument.currentFormat.Column("Approval").clear();

Property Writeable? Description

alignment no The alignment of the data in the column. This property can
one of the following constants: LEFT, CENTER, or RIGHT.

average no The average of the data in the column. This property only
works with averaged columns.

cellID no The id of the cell associated with the column.

container no The container for the column. A column is always contained
by a format.

id no The unique id of the column.

index no The index of the column.

name no The name of the column.

objectClass no The Column class.

selected no Is the column selected?

sorted no Is the column sorted?

total no The total of the data in the column. This property only works
with totalled columns.

totalsType no The totals type of the column. This property can be one of t
following constants: NONE, TOTALLED, or AVERAGED.

width no The width of the column in pixels.

Scripting 12-31

 .
 .

 .

m-

he

Forms Automation Manual Page 31 Thursday, June 18, 1998 11:30 AM
.

exists ()

The exists method verifies the existence a column.

// Get the total of the third column of the current format of the document
// referenced by theDoc.
theColumn = theDoc.currentFormat.Column(3);
if (theColumn.exists())
 if (theColumn.totalsType == TOTALLED)
 theTotal = theColumn.total;

Document

A Document object represents an opened data document in Informed Filler.

Reference

A Document object can reference documents by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

Properties

The following table lists the properties of a Document object.

Document Properties
Property Writeable? Description

attachmentsWindow no The attachments window

authorName no The template author’s name as entered on the Template
Information dialog.

authorOrganization no The template author’s organization as entered on the Te
plate Information dialog.

checkPeriod yes The revision check period. This property can be one of t
following constants: EVERY_TIME, DAILY, WEEKLY, MONTHLY,
or NEVER.

currentCell yes The current cell.

currentCollection yes The current collection of records.

12-32 Scripting

 .
 .

 .

ate

e

 Tem-

 the

Forms Automation Manual Page 32 Thursday, June 18, 1998 11:30 AM
.
currentFormat yes The current Record List format.

currentPage yes The current page of the form.

currentRecord yes The current record in the document.

description no The description of the template as entered on the Templ
Information dialog.

diskFile no The disk file that contains the data document.

distributed no Is the template distributed?

formWindow no The form window.

id no The unique id of the data document.

index yes The index of the data document.

lastChecked no When the last revision check occurred.

modified no Has the data document been modified?

name no The name of the data document.

objectClass no The Document class.

pageCount no The number of pages in the document.

recordListWindow no The Record List window.

revision no The revision number of the template as entered on the
Template Information dialog.

status no The status of the template. This property will be one of th
following constants: CURRENT, NONCURRENT, or
DISCONTINUED.

statusMessage no The status message for the template as entered on the
plate Information dialog.

templateID no The template document’s template ID as entered on the
Template Information dialog.

templateName no The template document’s template name as entered on
Template Information dialog.

Scripting 12-33

 .
 .

 .

The

nto
y

ct

on.
ue

Forms Automation Manual Page 33 Thursday, June 18, 1998 11:30 AM
.

Methods

The following methods are defined for a Document object:

close ([saving],[savingIn])

The close method closes a document.

Arguments for the close method

// Close the second document. Prompt the user to save if necessary.
Document(2).close();

// Close the document whose id is 104 without saving.
Document(id(104)).close(false);

// Close and save the document named "Inventory".
Document("Inventory").close(true);

// Close and save the current document as "Invoice".
thePlatform = Informed.platform;
if (thePlatform = WIN32 || thePlatform = WIN16)
 thePath = "c:\\informed\\data\\invoice.ifm";
else
 thePath = "HD:InformedÆ:Data:Invoice";
Informed.currentDocument.close(true, thePath);

collect (fileList,[append])

The collect method imports one or more files into a document.

Arguments for the collect method

Argument Description

saving Specifies whether changes should be saved before closing. If true , changes will
be saved before closing. If false , changes will not be saved. If null , Informed
will display a dialog asking if the user wants to save the changes if necessary.
default value is null .

savingIn Specifies the file in which to save the document. The default value is the file i
which the document was previously saved. If the document was not previousl
saved, the standard Save dialog is displayed.

Argument Description

fileList Specifies the files to import into the document. Its value must be a File obje
or an Array of File objects.

append If true , the imported records are appended to the end of the current collecti
If false , the imported records become the current collection. The default val
is false .

12-34 Scripting

 .
 .

 .

ds,

ust be

Forms Automation Manual Page 34 Thursday, June 18, 1998 11:30 AM
.
// Import the tab-delimited text file called "transact.txt" into the current
// document without appending.
Informed.currentDocument.collect(File("c:\\transact.txt"));

// Import the Informed Interchange file called "Temp Records" into the second
// document and append the records to the current collection.
Document(2).collect(File("HD:SomeDirectory:Temp Records"), true);

// Import each of the files "Temp1", "Temp2", and "Temp3" into the document named
// "Archive" without appending to the current collection.
file1 = File("Temp1");
file2 = File("Temp2");
file3 = File("Temp3");
theFileList = new Array(file1, file2, file3);
Document("Archive").collect(theFileList);

count (elementClass)

The count method returns the number of attached scripts, buttons, collections, formats, recor
saved formats, or tags within a document.

Arguments for the count method

// Count the number of records in the current document.
theCount = Informed.currentDocument.count(Record);

// Count the number of attachments in each record of the first document.
// Note: The result will be an array of integers.
theCountList = Document(1).count(Attachment);

exists ()

The exists method verifies the existence a document.

// Close the document named "Attendance" if it exists.
if (Document("Attendance").exists())
 Document("Attendance").close(true);

export (toFile,[whichCells],[format],[doAppend],[rowwise],[useQuotes]
[doMerge],[includeNotes])

The export method exports every record in a document to a file.

Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value m
AttachedScript, Button, Collection, Format, Record, SavedFormat, or Tag.

Scripting 12-35

 .
 .

 .

ta

l

l-

 is

es.

e

 is

Forms Automation Manual Page 35 Thursday, June 18, 1998 11:30 AM
.

Arguments for the export method

// Export all cells of every record in the current document to the Informed
// Interchange file named "details.iif".
Informed.currentDocument.export(File("c:\\details.iif"));

// Append the "LastName", "FirstName", "Address", and "Phone" cells of every record
// in the document named "Customers" to the tab-delimited text file "Address Info".
theFile = File("HD:Address Info");
theCellList = Cell(new Array ("LastName", "FirstName", "Address", "Phone"));
Document("Customers").export(theFile, theCellList, TAB_DELIMITED, true);

Argument Description

toFile This argument must be a File object which specifies the file into which the da
will be exported.

whichCells Specifies the cells which will be exported. This argument can be a single Cel
object, an array of Cell objects, a single column, or an array of columns. The
default value for whichCells is null , which specifies all cells. No container is
allowed for this argument.

format Specifies the file format of the export file. This argument can be one of the fo
lowing constants: INTERCHANGE, TAB_DELIMITED, or COMMA_DELIMITED, or a
string that specifies a format name. The default value for the format argument
INTERCHANGE.

doAppend If true , the exported records are appended to the end of the export file. If false ,
the export file is replaced with the exported records. The default value is false .

rowwise If true , then tables will be exported in row order. If false , tables will be
exported in column order. The default value is false .

useQuotes If true , then all exported values—except numbers—are surrounded with quot
If false , then only those values which contain delimiter characters are sur-
rounded with quotes. This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED.

doMerge If true , Informed will list each cell name on the first line of a new export file. Th
default value is true . This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED.

includeNotes If true , then any notes attached to the form will be exported. The default value
true . This argument is ignored if the format argument is not INTERCHANGE.

12-36 Scripting

 .
 .

 .

u-
ject
ag.

Forms Automation Manual Page 36 Thursday, June 18, 1998 11:30 AM
.
make (elementClass, withData,[withProperties])

The make method creates a new record, saved format, or tag in a document.

Arguments for the make method

// Create a new record in the current document.
Informed.currentDocument.make(Record);

// Create a new saved format named "Special Report" in the document named "Roster".
theFormatProperties = new Object;
theFormatProperties.name = "Special Report";
Document("Roster").make(SavedFormat, null, theFormatProperties);

// Create a new tag named "Deadbeats" in the document named "Receivable" for every
// record whose cell "Balance Owing" is greater than 0.
theDoc = Document("Receivable");
theTest = testGT(self.Cell("Balance Owing").value, 0);
theDoc.currentCollection = Record(theTest);
theTagProperties = new Object;
theTagProperties.name = "Deadbeats";
theDoc.make(Tag, null, theTagProperties);

print ([as],[copies],[fromPage],[toPage],[fromPart],[toPart],[printTemplate],
[printData],[collate])

The print method prints every record in a document.

Argument Description

elementClass Specifies the class of the new element. Its value must be Record,
SavedFormat, or Tag

withData This argument is not used. Its value must be null .

withProperties Specifies the initial values for the properties of the new element. This arg
ment is not used when creating a new record. This argument must be an ob
with a name property that specifies the name of the new SavedFormat or T

Scripting 12-37

 .
 .

 .

r

.

e

u-
re-
log

ne

Forms Automation Manual Page 37 Thursday, June 18, 1998 11:30 AM
.

Arguments for the print method

// Print every record in the current document as a single form.
Informed.currentDocument.print();

// Print two copies of every record in the first document as a record list.
Document(FIRST).print(RECORD_LIST, 2);

save ([inFile],[format])

The save method saves a document.

Arguments for the save method

// Save the document named "Samples".
Document("Samples").save();

// Save the current document as "c:\\summary.ifm".
Informed.currentDocument(File("c:\\summary.ifm"));

Argument Description

as Specifies whether to print as forms or as a list. This argument can be eithe
FORMS or RECORD_LIST. The default value is FORMS.

copies Specifies the number of copies to print. The default value is 1.

fromPage Specifies the page to start printing from. The default value is the first page

toPage Specifies the page to stop printing at. The default value is the last page.

fromPart Specifies which part of a multipart form to start printing from. The default
value is the first part.

toPart Specifies which part of a multipart form to stop printing at. The default valu
is the last part.

printTemplate If false , then don’t print the template. The default value is true .

printData If false , then don’t print the data. The default value is true .

collate Specifies whether or not to collate pages. The default value is true .

Argument Description

inFile This argument must be a File object which specifies the file into which the doc
ment will be saved. The default value is the file into which the document was p
viously saved. If the document was not previously saved, the standard Save dia
is displayed.

format This argument specifies the file format of the saved file. This argument will be o
of the following constants: DATA or PACKAGE. The default value is DATA.

12-38 Scripting

 .
 .

 .

ust

d.

Forms Automation Manual Page 38 Thursday, June 18, 1998 11:30 AM
.
// Save the current document as a package in "c:\\summary.ipk".
Informed.currentDocument(File("c:\\summary.ipk"), PACKAGE);

search (matchCell, matchValue,[matchOption],[findOption])

The search method searches for specific records in a document.

Arguments for the search method

// Set the current collection to every record whose cell "Name" contains
// "Smith".
Informed.currentDocument.search(Cell("Name"), "Smith");

Argument Description

matchCell Specifies the cell to search in. This argument cannot have a container and m
be either a single cell or column.

matchValue The value to search for. This argument must be an Array of two values if the
match option is RNG.

matchOption The match option. This argument will be one of the following constants:

EQ (is equal to)
NE (is not equal to)
LT (less than)
LE (less than or equal to)
GT (greater than)
GE (greater than or equal to)
BEG (begins with)
END (ends with)
CON (contains)
RNG (range)

The default value is RNG if the matchValue argument is an Array; CON if the
matchValue argument is a text, character or name cell; or EQ other wise.

findOption Specifies which records to look through and what to do with the records foun
This argument will be one of the following constants:

ALL_RECORDS (look through all records)
COLLECTED_RECORDS (look through collected records)
ADD_TO_COLLECTION (add to collection)
OMIT_FROM_COLLECTION (omit from collection)
FIRST_MATCH (go to first match in collection)
SELECT_MATCHES (select matches in Record List).

The default value is ALL_RECORDS.

Scripting 12-39

 .
 .

 .

f

 doc-

w-

object

Forms Automation Manual Page 39 Thursday, June 18, 1998 11:30 AM
.

// Add every record whose cell "Date" contains a date between January 1,
// 1998 and January 31, 1998 to the current collection of the third document.
rangeStart = new LongDate(0, 1998, 0, 1);
rangeEnd = new LongDate(0, 1998, 0, 31);
dateRange = new Array(rangeStart, rangEnd);
Document(3).search(Cell("Date"), dateRange, RNG, ADD_TO_COLLECTION);

send ([recipients],[subject],[body],[format],[encloseAs],
[messageAttachments]

The send method sends every record in a document using an electronic mail service.

Arguments for the send method

// Send every record of the current record to the recipient "jshmoe@worldcorp.com"
Informed.currentDocument.send("jshmoe@worldcorp.com");

// Send every record in the third document using the provided mail addressing
// information.
theRecipients = new Array("someone@worldcorp.com", "someoneelse@worldcorp.com");
theSubject = "Requested Form";
theBody = "Hereís the form you requested";
Document(3).send(theRecients, theSubject, theBody, INTERCHANGE);

Argument Description

recipients Specifies the recipients. This argument can be a string or an array o
strings.

subject Specifies the subject of the message. The default is the name of the
ument being sent.

body The body of the mail message. The default value is null (no body).

format The format to send the form in. This argument can be one of the follo
ing constants: DATA, PACKAGE, INTERCHANGE, COMMA_DELIMITED, or
TAB_DELIMITED, or a string that specifies the name of a format. The
default value is DATA.

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

messageAttachments Specifies any additional attachments. This argument can be a File
or an array of File objects.

12-40 Scripting

 .
 .

 .

ons

lt

g

f

n

 an

y

 doc-

w-

object

ady

Forms Automation Manual Page 40 Thursday, June 18, 1998 11:30 AM
.
sendExt ([usingStep],[recipients],[ccRecipients],[bccRecipients],

[appendRecipients],[subject],[body],[format],[encloseAs],
[messageAttachments],[appendAttachments],[mailSystem])

The sendExt method sends every record in a document. This method provides extended opti
over the send method.

Arguments for the sendExt method
Argument Description

usingStep Specifies the name or the index of the routing step to use. The defau
value is null (no routing step). If a routing step is supplied, all other
optional arguments override their corresponding settings in the routin
step configuration.

recipients Specifies the recipients. This argument can be a string or an array o
strings. The default is null (no recipients).

ccRecipients Specifies a list of recipients to cc. This argument can be a string or a
array of strings. The default is null (no cc recipients).

bccRecipients Specifies a list of recipients to bcc. This argument can be a string or
array of strings. The default is null (no bcc recipients).

appendRecipients Specifies whether or not to append other recipients to those alread
specified in a routing step. The default value is false .

subject Specifies the subject of the message. The default is the name of the
ument being sent.

body The body of the mail message. The default value is null (no body).

format The format to send the form in. This argument can be one of the follo
ing constants: DATA, PACKAGE, INTERCHANGE, COMMA_DELIMITED, or
TAB_DELIMITED, or a string that specifies the name of a format. The
default value is DATA.

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

messageAttachments Specifies any additional attachments. This argument can be a File
or an array of File objects. The default value is null (no additional
attachments).

appendAttachments Specifies whether or not to append other attachments to those alre
specified in a routing step. The default value is false .

Scripting 12-41

 .
 .

 .

as a

 is

il

ue is

n.

Forms Automation Manual Page 41 Thursday, June 18, 1998 11:30 AM
.

// Send every record of the document referenced by the variable theDoc using the
// fifth routing step with the additional attachments specified.
theAttachments = new Array(File("c:\\report.wpf"), File("c:\\summary.xls"));
theDoc.sendExt(5, null, null, null, null, null, null, null, null, theAttachments);

sendStep ([usingStep])

The sendStep method sends every record in a document using a preconfigured routing step.

Arguments for the sendStep method

// Send every record in the current document using the routing step called "Send to
// Manager".
Informed.currentDocument.sendStep("Send to Manager");

Element

An Element object refers to an element of a cell. A field cell contains only one element, where
table cell contains one element for each row of that table cell.

mailSystem This argument is illegal if a routing step is provided. If no routing step
provided, this argument can be a constant, a string that specifies the
name of a mail plug-in, or null which calls the default mail system on
the user’s machine. Informed provides the following constants for ma
systems that have the same name on both Windows and MacOS:

SMTP, EUDORA, MSMAIL, CCMAIL, and GROUPWISE

The following constants are for Windows only:

EXCHANGE, MAPI, VIM, MHS, MHSLOCAL

The following constants are for MacOS only:

QUARTERDECK, QUICKMAIL

Argument Description

usingStep Specifies the name or the index of the routing step to use. The default val
null (no routing step). If a routing step is supplied, all other optional argu-
ments override their corresponding settings in the routing step configuratio

12-42 Scripting

 .
 .

 .

or

ed

Forms Automation Manual Page 42 Thursday, June 18, 1998 11:30 AM
.
Reference

An Element object can reference elements by:

■ index

■ absolute position

■ relative position

■ range

■ test

Properties

The following table lists the properties of an Element object.

Element Properties

Methods

The following methods are defined for an Element object:

clear ()

The clear method clears the element of any data.

// Clear the third element of the cell named "Person" of the current record of the
// current document.
Informed.currentDocument.currentRecord.Cell("Person").Element(3).clear();

// Clear the last element of the cell named "Price" of the current record of the
// second document.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
Document(2).currentRecord.Cell("Price").Element(LAST).clear();

commit ([withLookup])

The commit method commits the element data, triggering any formatting, check calculations
lookups configured for the element.

Property Writeable? Description

container no The container for the element. An element is always contain
by a cell.

index no The index of the row element.

objectClass no The Element class.

value yes The value of the row element.

Scripting 12-43

 .
 .

 .

p

Forms Automation Manual Page 43 Thursday, June 18, 1998 11:30 AM
.

Arguments for the commit method

// Perform a deferred lookup by committing the element data at a later time.
theDoc = Document("Purchase Order");
lookupElem = theDoc.currentRecord.Cell("Part Number").currentElement;
lookupElem.set("PA1234", true, false);// set element data but suppress lookup
DoSomeStuff();// do some other stuff before doing lookup
theDoc.currentCell = lookupElem;// make lookup element the current cell
lookupElem.commit(true);// force lookup now

dataSize ()

The dataSize method returns the size of the element data in bytes.

// Return the size of the data in the second element of the first cell of the last
// record of the current collection of the third document.
Document(3).currentCollection.Record(LAST).Cell(FIRST).Element(2).dataSize();

// Get the size of each element of the cell named "Names" of the current record of
the document "Player Roster".
theElements = Document("Player Roster").currentRecord.Cell("Names").Element(ALL);
theSizes = theElements.dataSize();

exists ()

The exists method verifies the existence an element.

// Check to see if the 99th element of the first cell exists in the current record
// of the current Document.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
exists = Cell(FIRST).Element(99).exists();

get ()

The get method gets the value of an element in the specified format.

// Get the value of the last element of the table cell named "Qty" of the current
// record of the document named "Purchase Detail".
theElement = Document("Purchase Detail").currentRecord.Cell("Qty").Element(LAST);
theValue = theElement.get();

Argument Description

withLookup Specifies whether or not a lookup will be performed. If true , the lookup is per-
formed unconditionally. If false , the lookup is ignored. If null , a lookup is per-
formed only if the cell’s value has changed. The default value for the withLooku
argument is null . This argument is ignored if the specified cell is not a lookup
cell.

12-44 Scripting

 .
 .

 .

 doc-

-

h-

Forms Automation Manual Page 44 Thursday, June 18, 1998 11:30 AM
.
set (value,[withCommit],[withLookup])

The set method sets the value of a cell.

Arguments for the set method

// Set the next available element of the cell named "Item Number" of the
// current record of the current document to its row number.
theCell = Informed.currentDocument.currentRecord.Cell("Item Number");
nextIndex = theCell.count(Element) + 1;
theCell.Element(nextIndex).set(nextIndex);

// Set the current element of the cell named "Phone" of the last record of the
// document named "Personnel" to "403" but don't commit it.
theElement = Document("Personnel").Record(LAST).Cell("Phone").currentElement;
theElement.set("(403)", false);

// Set the last element of the cell named "Employee Number" of the current record
of the document reference by theDoc to 350213 and force a lookup.
theElement = theDoc.currentRecord.Cell("Employee Number").Element(LAST);
theElement.set(350213, true, true);

File

A File object represents a file. For example, if you write a script to export records from a data
ument, you use the File object to specify the file that you’re exporting the records to.

Reference

A File object can reference files by:

■ name

Argument Description

value The value to which the cell will be set.

withCommit If true , the data is committed to the cell immediately and any check calcula
tions or formatting options are triggered. If false , the data is not committed
immediately. The default is true .

withLookup Specifies whether or not a lookup is performed. If true , the lookup is per-
formed unconditionally. If false , the lookup is ignored. If null , a lookup is
performed only if the cell’s value has changed. The default value for the wit
Lookup argument is null . This argument is ignored if the specified cell is not a
lookup cell.

Note: If withLookup is specified (true or false), then withCommit must be
true or null .

Scripting 12-45

 .
 .

 .
hen

. If

Forms Automation Manual Page 45 Thursday, June 18, 1998 11:30 AM
.

Properties

No properties.

Methods

The following methods are defined for a File object:

open ([withRevisionCheck])

The open method opens a file and returns the resulting Document object.

Arguments for the open method

// Open the Macintosh file named "Temporary" without a revision check.
theTempDoc = File("HD:Informed:Data:Temporary").open(false);

// Open the Windows file named "payroll.ifm" and force a revision check.
thePayrollDoc = File("c:\\informed\\data\\payroll.ifm").open(true);

// Open the file named "Register" on either platform and perform a revision check
// only if it is required as per the Revision Preferences settings.
if (Informed.platform == WIN16 || Informed.platform == WIN32)
 registerFile = "c:\\informed\\data\\register.ifm";
else
 registerFile = "HD:Informed:Data:Register";
registerDoc = registerFile.open();

print ()

The print method prints the specified file. Informed always displays the standard Print dialog w
this method is used on a File object.

// Print the file named "Schedule" on either platform.
if (Informed.platform == MACOS68K || Informed.platform == MACOSPPC)
 File("HD:Informed:Data:Schedule").print();
else
 File("c:\\informed\\data\\schedule.ifm").print();

Argument Description

withRevisionCheck Specifies whether or not to do a revision check when opening the file
true , this argument forces a revision check. If false , no check is per-
formed. If null , the settings on the Revision Preferences panel take
effect. The default value is null .

12-46 Scripting

 .
 .

 .

y

ust be

Forms Automation Manual Page 46 Thursday, June 18, 1998 11:30 AM
.
Format

A Format object represents the current Record List format.

Reference

A Format object can reference formats by:

■ index

■ id

■ absolute position

■ test

Properties

The following table lists the properties of a Format object.

Format Properties

Methods

The following methods are defined for a Format object:

count (elementClass)

The count method returns the number of columns in a format.

Arguments for the count method

// Count the number of columns in the current format of the second document.
theCount = Document(2).currentFormat.count(Column);

Property Writeable? Description

container no The container for the format. A format is always contained b
a document.

id no The unique id for the format.

index no The index of the format.

objectClass no The Format class.

totalsVisible yes Are the totals for the columns visible?

Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value m
Column.

Scripting 12-47

 .
 .

 .

to.

Forms Automation Manual Page 47 Thursday, June 18, 1998 11:30 AM
.

exists ()

The exists method verifies the existence of a format.

// Check for the existence of the current format in the Document named "Payroll".
ok = Document("Payroll").currentFormat.exists();

Informed

The Informed object represents the Informed application.

Reference

No reference required.

Properties

The following table lists the properties of the Informed object.

Informed Properties
Property Writeable? Description

currentDocument yes The current document displayed by the application.

frontmost yes Is this the frontmost application?

name no The name of the application.

objectClass no The Informed class.

platform no The operating system the application is running on. This
property can be MacOS68K, MacOSPPC, Win16, or
Win32.

registeredCompany no The name of the company the application is registered

registeredName no The name of the user the application is registered to.

serialNumber no The serial number of the application.

suppressUI yes Suppress the display of dialogs and error messages?

version no The version number of the application.

12-48 Scripting

 .
 .

 .

-

must
w

Docu-

ted.

Forms Automation Manual Page 48 Thursday, June 18, 1998 11:30 AM
.
Methods

The following methods are defined for the Informed object:

count ([elementClass])

The count method returns the number of built-in commands, documents, menus, plug-in com
mands, templates, or windows within the Informed application.

Arguments for the count method

// Count the number of open documents.
documentCount = Informed.count(Document);

exists ()

The exists method verifies the existence of the Informed object.

// Check for the existence of the Informed object.
exists = Informed.exists();

make (elementClass, withData])

The make method creates a new document in Informed.

Arguments for the make method

// Create a new document from the template with template id "Transact B308".
theTemplate = Template(id("Transact B308"));
theDoc = Informed.make(Document, theTemplate);

quit ([saving])

The quit method quits Informed.

Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value
be BuiltinCommand, Document, Menu, PluginCommand, Template, or Windo

Argument Description

elementClass This argument specifies the class of the new element. Its value must be
ment.

withData This argument specifies the data from which the new element will be crea
Its value must be a Template object.

Scripting 12-49

 .
 .

 .

Forms Automation Manual Page 49 Thursday, June 18, 1998 11:30 AM
.

Arguments for the quit method

// Prompt to save changes in each modified document and then quit Informed.
Informed.quit();

// Quit Informed without saving.
Informed.quit(false);

// Save changes in each modified document without asking and then quit Informed.
Informed.quit(true);

Menu

A Menu object represents one or more menus in Informed Filler’s menu bar.

Reference

A Menu object can reference menus by:

■ name

■ index

■ absolute position

■ relative position

■ range

■ test

Properties

The following table lists the properties of a Menu object.

Menu Properties

Argument Description

saving Specifies whether to save changes before quitting. If true , changes will be saved.
If false , changes will not be saved. If null , Informed will display a dialog ask-
ing if the user wants to save the changes. The default value is null .

Property Writeable? Description

enabled yes Is the menu enabled?

index no The index of the menu.

name no The name of the menu.

objectClass no The Menu class.

12-50 Scripting

 .
 .

 .

 must

Forms Automation Manual Page 50 Thursday, June 18, 1998 11:30 AM
.
Methods

The following methods are defined for a Menu object:

count (elementClass)

The count method returns the number of menu items within a menu.

Arguments for the count method

// Count the number of menu items in the "File" menu.
menuItemCount = Menu("File").count(MenuItem);

exists ()

The exists method verifies the existence of a menu.

// Get the name of the sixth menu if it exists.
theMenu = Menu(6);
if (theMenu.exists())
 theName = theMenu.name;

MenuItem

A MenuItem object represents one or more menu items in a particular menu.

Reference

A MenuItem object can reference menu items by:

■ name

■ index

■ absolute position

■ relative position

■ range

■ test

Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value
be MenuItem.

Scripting 12-51

 .
 .

 .

must

Forms Automation Manual Page 51 Thursday, June 18, 1998 11:30 AM
.

Properties

The following table lists the properties of a MenuItem object.

Menu Item Properties

Methods

The following methods are defined for a MenuItem object:

count (elementClass)

The count method returns the number of menu items within a menu item.

Arguments for the count method

// Count the number of menu items in the menu item "Tags" of the menu "Database".
menuItemCount = Menu("Database").MenuItem("Tags").count(MenuItem);

execute ()

The execute method executes a menu item’s configured action.

// Execute the "Submit" command of the "File" menu if it is enabled.
theMenuItem = Menu("File").MenuItem("Submit");
if (theMenuItem.enabled)
 theMenuItem.execute();

Property Writeable? Description

container no The container for the menu item. A menu item is always
contained by a menu.

enabled yes Is the menu item enabled?

index no The index of the menu item.

name no The name of the menu item.

objectClass no The MenuItem class.

Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value
be MenuItem.

12-52 Scripting

 .
 .

 .

Forms Automation Manual Page 52 Thursday, June 18, 1998 11:30 AM
.
exists ()

The exists method verifies the existence of a menu item.

// Execute the menu item "Assign Next Value" of the "Cell" menu if it exists.
theMenuItem = Menu("Cell").MenuItem("AssignNextValue");
if (theMenuItem.exists())
 theMenuItem.execute();

PluginCommand

Some of Informed Filler’s features are made available by installing Informed plug-ins. Certain
plug-ins have commands associated with them. A PluginCommand object represents one or more
plug-in commands in Informed Filler.

Reference

A PluginCommand object can reference plug-in commands by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

Properties

The following table lists the properties of a PluginCommand object.

PluginCommand Properties
Property Writeable? Description

enable yes Is the plug-in command enabled?

id no The unique id of the plug-in command.

index no The index of the plug-in command.

name no The name of the plug-in command.

objectClass no The PluginCommand class.

Scripting 12-53

 .
 .

 .

Forms Automation Manual Page 53 Thursday, June 18, 1998 11:30 AM
.

Methods

The following methods are defined for a PluginCommand object:

execute ([withData])

The execute method executes a plug-in command.

Arguments for the execute method

// If it exists, execute the plug-in command referenced by the variable
// thePluginCmd with the data referenced by the string variable theData.
if (thePluginCmd.exists())
 thePluginCmd.execute(theData);

exists ()

The exists method verifies the existence of a plug-in command.

// Set the variable ok to true if the plug-in command reference by the variable
// thePluginCmd exists.
ok = thePluginCmd.exists();

Record

In Informed Filler, completed forms are stored as records in a data document. A Record object rep-
resents one or more records in a data document.

Reference

A Record object can referenced records by:

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

Argument Description

withData Specifies the data string required by the plug-in.

12-54 Scripting

 .
 .

 .

d

Forms Automation Manual Page 54 Thursday, June 18, 1998 11:30 AM
.
Properties

The following table lists the properties of a Record object.

Record Properties

Methods

The following methods are defined for a Record object:

clear ()

The clear method clears the record of any data.

// Clear the current record of the current document.
Informed.currentDocument.currentRecord.clear();

commit ()

The commit method commits the record data to the document.

// Commit the data of the current record of the document named "Transactions".
Document("Transactions").currentRecord.commit();

count ([elementClass])

The count method returns the number of attachments or cells within a record.

Property Writeable? Description

attachmentCount no The number of attachments enclosed in the record.

container no The container for the record. A record is always containe
by a document.

created no When the record was created.

id no The unique id of the record.

index no The index of the record.

lastMailed no When the record was last mailed.

lastModified no When the record was last modified.

lastPrinted no When the record was last printed.

modified no Has the record been modified?

objectClass no The Record class.

selected yes Is the record selected in the Record List?

Scripting 12-55

 .
 .

 .

ust be

ta

l

l-

 is

Forms Automation Manual Page 55 Thursday, June 18, 1998 11:30 AM
.

Arguments for the count method

// Count the number of attachments in the current record of the current document.
theCount = Informed.currentDocument.currentRecord.count(Attachment);

duplicate ()

The duplicate method duplicates a record.

// Duplicate the current record of the current collection of the first document.
theNewRecord = Document(FIRST).currentRecord.duplicate();

exists ()

The exists method verifies the existence of a record.

// Check if the third record of the first document exists.
exists = Document(FIRST).Record(3).exists();

export (toFile,[whichCells],[format],[doAppend],[rowwise],[useQuotes]
[doMerge],[includeNotes])

The export method exports a record to a file.

Arguments for the export method

Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value m
Attachment or Cell.

Argument Description

toFile This argument must be a File object which specifies the file into which the da
will be exported.

whichCells Specifies the cells which will be exported. This argument can be a single Cel
object, an array of Cell objects, a single column, or an array of columns. The
default value for whichCells is null , which specifies all cells. No container is
allowed for this argument.

format Specifies the file format of the export file. This argument can be one of the fo
lowing constants: INTERCHANGE, TAB_DELIMITED, or COMMA_DELIMITED, or a
string that specifies a format name. The default value for the format argument
INTERCHANGE.

doAppend If true , the exported records are appended to the end of the export file. If false ,
the export file is replaced with the exported records. The default value is false .

rowwise If true , then tables will be exported in row order. If false , tables will be
exported in column order. The default value is false .

12-56 Scripting

 .
 .

 .
es.

e

 is

ust

Forms Automation Manual Page 56 Thursday, June 18, 1998 11:30 AM
.

// Export all cells of the current record of the current document to the comma
// delimited file named "details.txt".
theRecord = Informed.currentDocument.currentRecord;
theRecord.export(File("c:\\details.txt"), null, COMMA_DELIMITED);

// Export the cells named "Name", "Address", and "Balance Owing" of every record
// of the document named "Accounts" whose cell "Balance Owing" is greater than 0 to
// the Informed Interchange file named "Receivables".
theTest = testGT(self.Cell("Balance Owing").value, 0);
theRecordList = Document("Accounts").Record(theTest);
theFile = File("HD:Receivables");
theCells = Cell(new Array ("Name", "Address", "Balance Owing"));
theRecordList.export(theFile, theCells, INTERCHANGE);

make (elementClass, withData)

The make method creates a new attachment in a record.

Arguments for the make method

// Create a new attachment for the third record of the current record of the
// current document from the file "Photo 1".
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
Record(3).make(Attachment, File("HD:Photo 1"));

useQuotes If true , then all exported values—except numbers—are surrounded with quot
If false , then only those values which contain delimiter characters are sur-
rounded with quotes. This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED.

doMerge If true , Informed will list each cell name on the first line of a new export file. Th
default value is true . This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED.

includeNotes If true , then any notes attached to the form will be exported. The default value
true . This argument is ignored if the format argument is not INTERCHANGE.

Argument Description

elementClass The class of the new element. Its value must be Attachment.

withData Specifies the data from which the new element will be created. Its value m
be a File object.

Scripting 12-57

 .
 .

 .

r

.

e

Forms Automation Manual Page 57 Thursday, June 18, 1998 11:30 AM
.

omit ()

The omit method omits a record from the current collection.

// Omit the first record from the current collection of the document referenced by
// the variable theDoc.
theDoc.currentCollection.Record(FIRST).omit();

// Omit every record of the current collection of the document "Receivables" whose
// cell "Last Payment" contains a value on or after January 1, 1998.
theTest = testGE(self.Cell("LastPayment").value, new LongDate(0, 1998, 0, 1));
Document("Receivables").currentCollection.Record(theTest).omit();

print ([as],[copies],[fromPage],[toPage],[fromPart],[toPart],[printTemplate],
[printData],[collate])

The print method prints a specified record.

Arguments for the print method

// Print the last record in the current collection of the current document as a
// single form.
Informed.currentDocument.currentCollection.Record(LAST).print();

// Print two copies of the third part of the current record in the first document.
Document(FIRST).currentRecord.print(null, 2, null, null, 3, 3);

// Print every record of the current collection of the current document whose cell
// "Company" contains the value "Shana" as a record list.
theTest = testCON(self.Cell("Company").value, "Shana");
theRecordList = Informed.currentDocument.currentCollection.Record(theTest);
theRecordList.print(RECORD_LIST);

Argument Description

as Specifies whether to print as forms or as a list. This argument can be eithe
FORMS or RECORD_LIST. The default value is FORMS.

copies Specifies the number of copies to print. The default value is 1.

fromPage Specifies the page to start printing from. The default value is the first page

toPage Specifies the page to stop printing at. The default value is the last page.

fromPart Specifies which part of a multipart form to start printing from. The default
value is the first part.

toPart Specifies which part of a multipart form to stop printing at. The default valu
is the last part.

printTemplate If false , then don’t print the template. The default value is true .

printData If false , then don’t print the data. The default value is true .

collate Specifies whether or not to collate pages. The default value is true .

12-58 Scripting

 .
 .

 .

f

 doc-

w-

object

Forms Automation Manual Page 58 Thursday, June 18, 1998 11:30 AM
.
remove ()

The remove method deletes a record from a document.

// Delete the current record of the current document.
Informed.currentDocument.currentRecord.remove();

// Delete every record of the current collection of the document referenced by
// theDoc whose cell "LastSubscribed" contains a date before December 31, 1995.
lastValidDate = new LongDate (0, 1995, 11, 31);
theTest = testLT(self.Cell("LastSubscribed").value, lastValidDate);
theDoc.currentCollection.Record(theTest).remove();

revert ()

The revert method restores a record to its last saved state.

// This command reverts the current record of the current document.
Informed.currentDocument.currentRecord.revert();

send ([recipients],[subject],[body],[format],[encloseAs],
[messageAttachments])

The send method sends a record using an electronic mail service.

Arguments for the send method

// Send the current record of the document named "Requests" to the recipient
// "someone@someplace.com".
Document("Requests").currentRecord.send("someone@someplace.com");

Argument Description

recipients Specifies the recipients. This argument can be a string or an array o
strings.

subject Specifies the subject of the message. The default is the name of the
ument being sent.

body The body of the mail message. The default value is null (no body).

format The format to send the form in. This argument can be one of the follo
ing constants: DATA, PACKAGE, INTERCHANGE, COMMA_DELIMITED, or
TAB_DELIMITED, or a string that specifies the name of a format. The
default value is DATA.

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

messageAttachments Specifies any additional attachments. This argument can be a File
or an array of File objects.

Scripting 12-59

 .
 .

 .

lt

g

f

n

 an

y

 doc-

w-

Forms Automation Manual Page 59 Thursday, June 18, 1998 11:30 AM
.

// Send every record of the current document whose cell "FirstName" equals "Brent"
// and cell "LastName" equals "Taylor" with the provided addressing information.
test1 = testEQ(self.Cell("FirstName").value, "Brent");
test2 = testEQ(self.Cell("LastName").value, "Taylor");
theRecordList = Informed.currentDocument.Record(testAND(test1, test2));
theRecipients = "btaylor@worldcorp.com";
theSubject = "Hi there";
theBody = "Just called to say hi!";
theRecordList.send(theRecipients, theSubject, theBody);

sendExt ([usingStep],[recipients],[ccRecipients],[bccRecipients],
[appendRecipients],[subject],[body],[format],[encloseAs],
[messageAttachments],[appendAttachments],[mailSystem])

The sendExt method sends a record using an electronic mail service. This method provides
extended options over the send method.

Arguments for the sendExt method
Argument Description

usingStep Specifies the name or the index of the routing step to use. The defau
value is null (no routing step). If a routing step is supplied, all other
optional arguments override their corresponding settings in the routin
step configuration.

recipients Specifies the recipients. This argument can be a string or an array o
strings. The default is null (no recipients).

ccRecipients Specifies a list of recipients to cc. This argument can be a string or a
array of strings. The default is null (no cc recipients).

bccRecipients Specifies a list of recipients to bcc. This argument can be a string or
array of strings. The default is null (no bcc recipients).

appendRecipients Specifies whether or not to append other recipients to those alread
specified in a routing step. The default value is false .

subject Specifies the subject of the message. The default is the name of the
ument being sent.

body The body of the mail message. The default value is null (no body).

format The format to send the form in. This argument can be one of the follo
ing constants: DATA, PACKAGE, INTERCHANGE, COMMA_DELIMITED, or
TAB_DELIMITED, or a string that specifies the name of a format. The
default value is DATA.

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

12-60 Scripting

 .
 .

 .
object

ady

 is

il

ue is

n.

Forms Automation Manual Page 60 Thursday, June 18, 1998 11:30 AM
.

// Send the current record of the document named "Summary" as specified by the
// third routing step, except send it to "someone@worldcorp.com" instead of to the
// specified recipient.
theRecord = Document("Summary").currentRecord;
theRecord.send (3, "someone@worldcorp.com", null, null, false);

sendStep ([usingStep])

The sendStep method sends a record using a preconfigured routing step.

Arguments for the sendStep method

// Send the last record of the current collection of the document named "Invoices"
// using the routing step named "Submit Invoice".
Document("Invoices").currentCollection.Record(LAST).sendStep("Submit Invoices");

messageAttachments Specifies any additional attachments. This argument can be a File
or an array of File objects. The default value is null (no additional
attachments).

appendAttachments Specifies whether or not to append other attachments to those alre
specified in a routing step. The default value is false .

mailSystem This argument is illegal if a routing step is provided. If no routing step
provided, this argument can be a constant, a string that specifies the
name of a mail plug-in, or null which calls the default mail system on
the user’s machine. Informed provides the following constants for ma
systems that have the same name on both Windows and MacOS:

SMTP, EUDORA, MSMAIL, CCMAIL, and GROUPWISE

The following constants are for Windows only:

EXCHANGE, MAPI, VIM, MHS, MHSLOCAL

The following constants are for MacOS only:

QUARTERDECK, QUICKMAIL

Argument Description

usingStep Specifies the name or the index of the routing step to use. The default val
null (no routing step). If a routing step is supplied, all other optional argu-
ments override their corresponding settings in the routing step configuratio

Scripting 12-61

 .
 .

 .

nt

s

Forms Automation Manual Page 61 Thursday, June 18, 1998 11:30 AM
.

SavedFormat

Informed Filler’s Record List window can be customized to display data in a variety of differe
formats. A SavedFormat object represents one or more saved Record List formats.

Reference

A SavedFormat object can reference saved formats by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

Properties

The following table lists the properties of a SavedFormat object.

SavedFormat Properties

Methods

The following methods are defined for a SavedFormat object:

exists ()

The exists method verifies the existence of a saved format.

// Set the current format of the first document to the saved format
// "QuickCheck Format" if it exists.
theDocument = Document(1);
theSavedFormat = theDocument.SavedFormat("QuickCheck Format");
if (theSavedFormat.exists())
 theDocument.currentFormat = theSavedFormat;

Property Writeable? Description

container no The container for the saved format. A saved format is alway
contained by a document.

id no The unique id for the saved format.

index no The index of the saved format.

name no The name of the saved format.

objectClass no The SavedFormat class.

12-62 Scripting

 .
 .

 .

 that
t.

cu-

Forms Automation Manual Page 62 Thursday, June 18, 1998 11:30 AM
.
remove ()

The remove method deletes a saved format from a document.

// Delete all saved formats from the document named "Tax Form".
Document("Tax Form").SavedFormat(ALL).remove();

Tag

Informed Filler’s Tag feature provides an easy way to identify unique collections of records so
they can be quickly recalled and viewed. A Tag object represents one or more tags in a documen

Reference

A Tag object can reference tags by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

Properties

The following table lists the properties of a Tag object.

Tag Properties
Property Writeable? Description

container no The container for the tag. A tag is always contained by a do
ment.

id no The unique id for the tag.

index no The index of the tag.

name no The name of the tag.

objectClass no The Tag class.

Scripting 12-63

 .
 .

 .

Forms Automation Manual Page 63 Thursday, June 18, 1998 11:30 AM
.

Methods

The following methods are defined for a Tag object:

exists ()

The exists method verifies the existence of a tag.

// Set the current collection of the current document to the tag named "California
// Invoices" if it exists.
theDoc = Informed.currentDocument;
theTag = theDoc.Tag("California Invoices");
if (theTag.exists())
 theDoc.currentCollection = theTag;

remove ()

The remove method deletes a tag from a document.

// Delete the tag named "Invoices" from the first document.
Document(1).Tag("Invoices").remove();

// Delete every tag in the current document.
// This example uses implied containment.See "Containment" earlier in this chapter
// for more information.
Tag(ALL).remove();

Template

A Template object represents the form template used by a data document.

Reference

A Template object can reference templates by:

■ name

■ index

■ id

■ absolute position

■ relative position

■ range

■ test

12-64 Scripting

 .
 .

 .

late

-

Forms Automation Manual Page 64 Thursday, June 18, 1998 11:30 AM
.
Properties

The following table lists the properties of a Template object.

Template Properties

Methods

The following methods are defined for a Template object:

exists ()

The exists method verifies the existence of a template.

// Create a new document from the template with template id "Timesheet" if it
// exists.
theTemplate = Template(id("TimeSheet"));
if (theTemplate.exists())
 theDocument = Informed.make(Document, theTemplate);

Window

A Window object represents a window in Informed Filler.

Reference

A Window object can reference windows by:

■ name

■ index

■ id

■ absolute position

■ relative position

Property Writeable? Description

diskFile no The disk file that contains the template

id no The template id for the template as entered on the Template
Information dialog.

index no The index of the template.

name no The template name of the template as entered on the Temp
Information dialog.

objectClass no The Template class.

revision no The revision number of the template as entered on the Tem
plate Information dialog.

Scripting 12-65

 .
 .

 .

-

Forms Automation Manual Page 65 Thursday, June 18, 1998 11:30 AM
.

■ range

■ test

Properties

The following table lists the properties of a Window object.

Window Properties

Methods

The following methods are defined for a Window object:

close ([saving],[savingIn])

The close method closes a window.

Property Writeable? Description

bounds yes The boundary rectangle for the window.

closeable no Does the window have a close box?

floating no Is the Window a floating window?

id no The unique ID of the window.

index yes The number of the window.

kind no The window kind. This property can be one the following con
stants: ATTACHMENTS_KIND, CLIPBOARD_KIND, FORM_KIND, or
RECORD_LIST_KIND.

modal no Is the window modal?

name no The title of the window.

objectClass no The class of object.

parentDocument no The document to which the window belongs.

resizable no Is the window resizable?

titled no Does the window have a title bar?

visible yes Is the window visible?

zoomable no Is the window zoomable?

zoomed yes Is the window zoomed?

12-66 Scripting

 .
 .

 .

as

Forms Automation Manual Page 66 Thursday, June 18, 1998 11:30 AM
.
Arguments for the close method

// Close the frontmost window and prompt to save (if it is a form window).
Window(FIRST).close();

// Close the record list window of the current document.
Informed.currentDocument.recordListWindow.close();

// Close the form window referenced by the variable theFormWind without saving.
theFormWind.close(false);

// Close the form window referenced by the variable theFormWind and save to the
// file "NewFile".
thePlatform = Informed.platform;
if (thePlatform == MACOS68K || thePlatform == MACOSPPC)
 thePath = "HD:Informed:Data:NewFile";
else
 thePath = "c:\\informed\\data\\newfile.ifm";
theFormWind.close(true, File(thePath));

exists ()

The exists method verifies the existence of a window.

// Check for the existence of a window named "Invoice".
invoiceWindowExists = Window("Invoice").exists();

open ()

The open method opens a window and returns the resulting Window object.

// Open the attachments window of the second document.
theWindow = Document(2).attachmentsWindow.open();

Argument Description

saving Specifies whether changes should be saved before closing. If true , changes will
be saved. If false , changes will not be saved. If null , Informed will display a
dialog asking if the user wants to save the changes. The default value is null .
This argument is ignored if the window is not a form window.

savingIn Specifies the file in which to save the window. The default value is the file into
which the window’s parent document was previously saved. It the document w
not previously saved, the standard Save dialog is displayed. This argument is
ignored if the window is not a form window.

Scripting 12-67

 .
 .

 .

ata

refore,
and

t for an
vides

lue

rent
ite a
a

m-

Forms Automation Manual Page 67 Thursday, June 18, 1998 11:30 AM
.

Additional Built-in Objects
Informed’s JavaScript implementation provides several additional built-in objects to specify d
required by Informed.

LongDate Object

The Date object is a built-in object which provides system-independent dates and times.
Unfortunately, the Date object only supports date and time values since January 1, 1970. The
JavaScript for Informed provides a LongDate object which supports the entire range of data
time values required by Informed.

The LongDate object supports virtually the same set of constructors as the Date object excep
additional argument which specifies the era (0 = AD, -1 = BC). The LongDate object also pro
methods for getting and setting the era.

The value of an Informed cell can be set to either a Date object or a LongDate object. The va
obtained from an Informed cell is always a LongDate object.

For example, the following script sets the value of a cell to the date “November 6, 1960 AD”.

theDate = new LongDate (0, 1960, 11, 6);
theCell . value = theDate;

Communicating with Other Applications

An important feature of Informed’s scripting functionality is the ability to integrate with other
applications. By controlling different applications, a single script can effectively combine diffe
features from different products to provide more powerful solutions. For example, you can wr
script which instructs Informed Filler to collect data from a collection of records, chart the dat
using a spreadsheet application, then insert the results into a letter using a word processor.

On Mac OS, this type of functionality is available through AppleScript. On Windows, Informed
provides two Windows-only built-in objects—Application and DDE—which allow a script to co
municate with another Windows application using DDE (Dynamic Data Exchange).

Additional Built-in Objects

12-68 Scripting

 .
 .

 .

i-

e
rgu-
e fol-

ally

, an

ion
 pro-

Forms Automation Manual Page 68 Thursday, June 18, 1998 11:30 AM
.
Application Object

The Application object is a Windows-only built-in object which can be used to launch and term
nate another application.

The constructor for the Application object requires a single string argument which contains th
command line (filename plus optional parameters) for the application to be launched. If the a
ment does not contain the full path for the application, Windows searches the directories in th
lowing order.

■ the current directory

■ the Windows directory

■ the directory from which Informed Filler was launched

■ the directories listed in the PATH environment variable

■ the directories mapped in a network

Methods

The following methods are defined for the Application object.

launch ()

The launch method launches the application specified by the constructor argument and intern
stores a reference to the application.

// launch Excel
theApp = new Application("Excel");
theApp.launch();

terminate ()

The terminate method uses the internal reference to the application to terminate it. Therefore
Application object cannot be used to terminate an application that it did not launch.

// terminate Excel
theApp.terminate();

DDE Object

The DDE object is a Windows-only built-in object which can be used to open a DDE conversat
with a DDE server application. The conversation protocol is application specific, so you must
vide those values required by the server application.

The constructor requires two arguments which represent the application and the topic for the
desired DDE conversation.

Scripting 12-69

 .
 .

 .

n
sary.

e
meout
result

 trans-
meout

d for
he tim-

ed

Forms Automation Manual Page 69 Thursday, June 18, 1998 11:30 AM
.

Methods

The following methods are defined for the DDE object.

connect ()

The connect method is used to open a DDE conversation. The DDE server must be running i
order to open the conversation. Use the Application object to launch the DDE server if neces

request ()

The request method requests a value from a DDE server. The first argument is the item for th
DDE transaction. The second argument is the timeout value measured in milliseconds. The ti
argument is optional. All other arguments are required. If successful, the method returns the
of the request.

poke ()

The poke method passes a value to a DDE server. The first argument is the item for the DDE
action. The second argument is the value for the DDE transaction. The third argument is the ti
value measured in milliseconds. The timeout argument is optional. All other arguments are
required.

execute ()

The execute method passes a command to a DDE server. The first argument is the comman
the DDE transaction. The second argument is the timeout value measured in milliseconds. T
eout argument is optional. All other arguments are required.

disconnect ()

The disconnect method is used to terminate the DDE conversation.

The following script uses the Application and DDE objects to exchange data between Inform
Filler and Microsoft Excel.

// launch Excel
theApp = new Application("Excel");
theApp.launch();

// open the DDE conversation
theDDE = new DDE("Excel", "Sheet1");
theDDE.connect();

// exchange the data
Cell("Cost").value = theDDE.request("R1C1");
theDDE.poke("R1C2", Cell("Price").value);

12-70 Scripting

 .
 .

 .

ost
 func-

ge is

d.

rs
inues.
ension
cates
ult.

era-
rror
ay be

e is

Forms Automation Manual Page 70 Thursday, June 18, 1998 11:30 AM
.
// close the DDE conversation
theDDE.disconnect();

// terminate Excel
theApp.terminate();

Error Handling
The JavaScript language does not currently provide any form of exception handling. Since m
Informed reference object methods can potentially return an error, Informed provides built-in
tions which allow these errors to be handled intelligently.

Standard Behaviour

Normally, if an error occurs while executing a script, a dialog with the appropriate error messa
displayed and the script terminates at the line on which the error occurred.

For example, if the file “Invoice.ifm” is missing, the following script will display an error dialog
and the script will terminate on the second line. The third line of the script will not be execute

theFile = new File("c:\\informed\\data\\Invoice.ifm");
theCoc.currentCollection = theDoc.Record(ALL);
theFile.open;

Suspending Errors

The suspendErrors built-in function is used to turn error suspension on or off. If an error occu
while error suspension is on, the error dialog is not displayed and execution of the script cont
The suspendErrors function requires a boolean argument which indicates whether error susp
is to be turned on or off. The suspendErrors function also returns a boolean result which indi
the previous error suspension state. The error suspension state for any script is false by defa

The getLastError built-in function is used to obtain error information about the most recent op
tion which may have produced an error. If no error occurred, getLastError returns null. If an e
did occur, getLastError returns a built-in Error object whose code and message properties m
inspected to obtain the error code and error message generated by the error, respectively.

For example, the following script attempts to open a file. If an error occurs, the error messag
stored into the cell “Error”.

// turn error suspension on and remember the old state
oldState = suspendErrors(true);

Error Handling

Scripting 12-71

 .
 .

 .

ate

Forms Automation Manual Page 71 Thursday, June 18, 1998 11:30 AM
.

// open the file
theFile = new File("Invoice.ifm");
theFile.open;

// handle the error
theError = getLastError ();
if (theError) {

Cell(”Error code”).value = theError.code;
Cell (”Error message”).value = theError.message;

return;
}

// restore the error suspension state
suspendErrors (oldState);

// proceed with the script
theDoc.currentCollection = the Doc.Record(ALL);

Sample Scripts
The following sample scripts are provided to show you how JavaScript can be used to autom
tasks that are performed frequently by Informed Filler users.

Working with Documents

Opening a Document

This script opens a specific document:

var theFile, theDocument;

theFile = new File("HD:Test Form");
theDocument = theFile.open();

Closing a Document

This script closes the first document:

// Close the first document
Document(1).close();

This script closes all open documents:

// Close every document
Document(ALL).close();

Sample Scripts

12-72 Scripting

 .
 .

 .

ses that

the

Forms Automation Manual Page 72 Thursday, June 18, 1998 11:30 AM
.
This script closes and saves a specific document:

// Close and save the document named "Inventory".
Document("Inventory").close(true);

Saving a Document

This script saves a document:

// Save the document named "Samples".
Document("Samples").save();

This script saves a document into a particular file using the package data format:

// Save the current document as a package in "c:\\summary.ipk".
Informed.currentDocument(File("c:\\summary.ipk"), PACKAGE);

Working with Records

Making a New Record

This script makes a new record in the current document:

// Make a new record in the current document
Document(1).make(Record);

This script uses the "make" method to return a reference to the new record object, and then u
reference to manipulate the new record:

var theRec;

theRec = Document(1).make(Record);
theRec.Cell("Name").value = "Fred";
theRec.Cell("Era").value = "Jurassic";

Setting a Collection of Records

This script sets the current collection to all records in the document:

// Set the collection to all records
Document(1).currentCollection = Document(1).Record(ALL);

This script sets the current collection to a group of records that match a test. In this sample,
script tests for all records where the "Salary" cell is greater than 35000:

// Set the collection to some records that match a test
theTest = testGT(self.Cell("Salary").value, 35000);
Document(1).currentCollection = Document(1).Record(theTest)

Scripting 12-73

 .
 .

 .

f the

ber of

 where

Forms Automation Manual Page 73 Thursday, June 18, 1998 11:30 AM
.

Counting Records

This script counts the number of records in the current collection:

// Count the number of records in the current collection

var count

count = Document(1).currentCollection.count(Record);

This script counts the number of records in a document, including records that are not part o
current collection:

count = Document(1).count(Record);

This script sets the current collection to all records in the document, then counts the total num
records:

// Set the collection to "every record", then count.

Document(1).currentCollection = Record(ALL);
count = Document(1).count(Record);

Deleting Records

This script deletes the current record:

// Delete the current record
Document(1).currentRecord.remove();

This script deletes a specific range of records:

// Delete the first three records
Document(1).currentCollection.Record(1,3).remove();

This script deletes all records that match a specific test. In this sample, the test is all records
the "Name" cell is equal to "Fred".

// Delete records that match a test
theTest = testEQ(self.Cell("Name").value, "Fred");
Document(1).currentCollection.Record(theTest).remove();

Duplicating Records

This script duplicates the current record:

// Duplicate the current record
Document(1).currentRecord.duplicate();

Omitting Records

This script omits a specific record from the current collection:

// Omit a specific record
Document(1).currentCollection.Record(1).omit();

12-74 Scripting

 .
 .

 .
re the

 the

 finds

Forms Automation Manual Page 74 Thursday, June 18, 1998 11:30 AM
.
This script omits all records that match a test. In this case, the script tests for all records whe
"City" cell equals "New York."

// Omit records that match a test
theTest = testEQ(self.Cell("City").value, "New York");
Document(1).currentCollection.Record(theTest).omit();

Committing a Record

This script commits any changes to the current record. This is equivalent to the user pressing
“Enter” key:

// Commit any changes to the current record.
Document(1).currentRecord.commit();

Reverting a Record

This script reverts a record to its last saved state:

// Revert any changes to the current record
Document(1).currentRecord.revert();

Looping Through Records

This script counts the number of records in a collection, then loops through each record and
the grand total of all the "Total" cells:

// Process each record
var i, n, theTotal;

n = Document(1).currentCollection.count (Record);
theTotal = 0.0;
for (i = 1; i <= n; i++) {
 theTotal += Document(1).currentCollection.Record(i).Cell("Total").value;
}

Exporting Records

This script exports the current document using the tab delimited data format:

// Export document 1 as tab delimited text

var theFile;

theFile = new File("HD:Data File");
Document(1).export(theFile, null, TAB_DELIMITED);

This script exports a single record into a file:

// Export the current record to a file

Document(1).currentRecord.export(File("HD:Test.iif"));

Scripting 12-75

 .
 .

 .

an

s:

Forms Automation Manual Page 75 Thursday, June 18, 1998 11:30 AM
.

This script searches for any records where the amount in the "Overdue Amt" cell is greater th
zero, and exports those records into a file named "Deadbeats.iif".

// Export some specific records
theTest = testGT(self.Cell("Overdue Amt").value, 0);
Document(1).currentCollection.Record(theTest).export(File ("HD:Deadbeats.iif");

Importing Records

This script imports a specific file into a document:

// Import some data

Document(1).collect(File("HD:Data File"));

This script moves data from one document to another by using the export and collect method

// set the collection of document 1 to every record
// with an overdue amount:
//
var doc1 = Document(1);
var deadbeats = doc1.Record(testGT(self.Cell("Overdue Amt").value, 0));

if (deadbeats.exists ())
{
 theFile = File ("HD:Deadbeats.iif");
 doc1.currentCollection = deadbeats;
 doc1.currentCollection.export(theFile);
 Document("Deadbeats").collect(theFile);
}

Printing

This script prints a document:

// Print everything
Document(1).print();

This script prints the current collection of records as a list rather than forms:

// Print the current collection as a list
Document(1).currentCollection.print(RECORD_LIST);

This script prints only the data (no template) from the current collection of records:

// Print the current collection onto pre-printed forms.
// (print the data only)
//
Document(1).currentCollection.print(FORMS, null, null, null, null, null, false,
true);

12-76 Scripting

 .
 .

 .

Forms Automation Manual Page 76 Thursday, June 18, 1998 11:30 AM
.
Working with Cells

Setting a Cell’s Value

This script sets the current cell’s value to a blank value:

// Clear the current cell of the current document.
Informed.currentDocument.currentCell.set("");

This script sets the values for multiple cells:

// Set a list of cells to a list of values.
cellNames = new Array ("Company Name", "Phone Number");
theCells = Document(2).currentRecord.Cell(cellNames);
theData = new Array ("Shana Corporation", "(403) 433-3690");
theCells.set(theData);

Clearing a Cell

This script clears the value of one cell in a single record:

// Clear the cell named "Signature" of the current record of the document named
// "Authorization".
Document("Authorization").currentRecord.Cell("Signature").clear();

This script clears the value of the same cell of every record in a collection:

// Clear the cell named "Signature" of every record of the current collection of
// the document named "Authorization".
Document("Authorization").currentCollection.Cell("Signature").clear();

Getting a Cell’s Value

This script gets the value of a specific cell in the current record:

// Get the value of the cell named "Signed Date" of the current record of the
// frontmost document.
theValue = Document(FIRST).currentRecord.Cell("Signed Date").get();

This script gets the value of a table cell:

// Get the value of the table cell named "Description" of the current record of the
// current document. The result is an array.
theValueList = Informed.currentDocument.currentRecord.Cell("Description").get();

Scripting 12-77

 .
 .

 .

o local

ument:

Forms Automation Manual Page 77 Thursday, June 18, 1998 11:30 AM
.

Copying Cell Values Between Documents

This script copies a group of cell values from one document to another. It reads the values int
variables, then writes them to the other document:

function Copy ()
{
 var theName, theAddress, theCity, theZip;
 var rec;

 rec = Document("Employees").currentRecord;

 theName = rec.Cell("Name").value;
 theAddress = rec.Cell("Address").value;
 theCity = rec.Cell("City").value;
 theZip = rec.Cell("Zip").value;

 rec = Document("Holidays").currentRecord;

 rec.Cell("Name").value = theName;
 rec.Cell("Address").value = theAddress;
 rec.Cell("City").value = theCity;
 rec.Cell("Zip").value = theZip;
}

This script makes an array of cell names, then copies all the values at once into the other doc

function Copy ()
{
 var cellNames, cellValues;
 var rec;

 cellNames = new Array("Name", "Address", "City", "Zip");

 rec = Document("Employees").currentRecord;
 cellValues = rec.Cell(cellNames).value;
 rec = Document("Holidays").currentRecord;
 rec.Cell(cellNames).value = cellValues;
}

Signing Cells

This script signs a signature cell using the Entrust signing system:

// Sign the signature cell named "Signature" of the current record of the
// document named "Authorization" using the Entrust signing system.
Document("Authorization").currentRecord.Cell("Signature").sign(ENTRUST);

12-78 Scripting

 .
 .

 .

Forms Automation Manual Page 78 Thursday, June 18, 1998 11:30 AM
.
Working with Attachments

Making a New Attachment

This script makes a new attachment for a specific record:

// Create a new attachment for the third record of the current record of the
// current document from the file "Photo 1".
Record(3).make(Attachment, File("HD:Photo 1"));

Removing Attachments

This script removes every attachment from every record in the collection:

// Remove every attachment from every record of the current collection of the
// document referenced by the variable theDoc.
theDoc.currentCollection.Attachment(ALL).remove();

Saving Attachments

This script saves all files attached to the current record:

// Save every attachment of the current record of the document named "Submissions"
// with its own name into the directory "c:\submit\".
theRec = Document("Submissions").currentRecord;
for (i = 1; i <= theRec.count(Attachment); i++) {

theAttachment = theRec.Attachment(i);
theAttachment.save(File("c:\submit\\" + theAttachment.name));

}

Quitting Informed

This script quits the Informed application:

Informed.quit();

	Overview
	Entering and Editing Scripts
	Informed JavaScript Implementation
	Reference Objects
	Containment
	Syntax Shortcuts
	Using Variables
	Implied Containment
	Rules for Implied Containment

	Reference Object Types
	Index Reference Objects
	Name Reference Objects
	ID Reference Objects
	Absolute Position Reference Objects
	Relative Position Reference Objects
	Range Reference Objects
	List Reference Objects
	Test Reference Objects
	Comparison Test Descriptors
	Logical Tests Descriptors
	Index Test Reference Objects
	Range Test Reference Objects

	Reference Object Descriptions
	Additional Built-in Objects
	Communicating with Other Applications

	Error Handling
	Standard Behaviour
	Suspending Errors

	Sample Scripts
	Working with Documents
	Opening a Document
	Closing a Document
	Saving a Document
	Working with Records
	Making a New Record
	Setting a Collection of Records
	Counting Records
	Deleting Records
	Duplicating Records
	Omitting Records
	Committing a Record
	Reverting a Record
	Looping Through Records
	Exporting Records
	Importing Records
	Printing
	Working with Cells
	Setting a Cell’s Value
	Clearing a Cell
	Getting a Cell’s Value
	Copying Cell Values Between Documents
	Signing Cells
	Working with Attachments
	Making a New Attachment
	Removing Attachments
	Saving Attachments
	Quitting Informed

